77 research outputs found

    Motor Output Variability Impairs Driving Ability in Older Adults

    Get PDF
    Background: The functional declines with aging relate to deficits in motor control and strength. In this study, we determine whether older adults exhibit impaired driving as a consequence of declines in motor control or strength. Methods: Young and older adults performed the following tasks: (i) maximum voluntary contractions of ankle dorsiflexion and plantarflexion; (ii) sinusoidal tracking with isolated ankle dorsiflexion; and (iii) a reactive driving task that required responding to unexpected brake lights of the car ahead. We quantified motor control with ankle force variability, gas position variability, and brake force variability. We quantified reactive driving performance with a combination of gas pedal error, premotor and motor response times, and brake pedal error. Results: Reactive driving performance was ~30% more impaired (t = 3.38; p \u3c .01) in older adults compared with young adults. Older adults exhibited greater motor output variability during both isolated ankle dorsiflexion contractions (t = 2.76; p \u3c .05) and reactive driving (gas pedal variability: t = 1.87; p \u3c .03; brake pedal variability: t = 4.55; p \u3c .01). Deficits in reactive driving were strongly correlated to greater motor output variability (R 2 = .48; p \u3c .01) but not strength (p \u3e .05). Conclusions: This study provides novel evidence that age-related declines in motor control but not strength impair reactive driving. These findings have implications on rehabilitation and suggest that interventions should focus on improving motor control to enhance driving-related function in older adults

    Motor Output Variability Impairs Driving Ability in Older Adults: Reply to Stinchcombe, Dickerson, Weaver, and Bedard

    Get PDF
    Driving is a complex skill, as indicated by Stinchcombe and colleagues in their letter. It requires the integration of sensory inputs, cognitive processing, and motor execution. Although our title is broad, we clearly indicate that our findings only address a single component of driving, namely reactive driving. We also indicate that these findings are based on a simulated task and recommend that future studies should examine the contribution of motor output variability to on-road driving performance (see Considerations in the Discussion section). Thus, we share the consideration of Stinchcombe and colleagues that the current results only address a small portion of the driving complexity

    Sex Differences in Spatial Accuracy Relate to the Neural Activation of Antagonistic Muscles in Young Adults

    Get PDF
    Sex is an important physiological variable of behavior, but its effect on motor control remains poorly understood. Some evidence suggests that women exhibit greater variability during constant contractions and poorer accuracy during goal-directed tasks. However, it remains unclear whether motor output variability or altered muscle activation impairs accuracy in women. Here, we examine sex differences in endpoint accuracy during ankle goal-directed movements and the activity of the antagonistic muscles. Ten women (23.1 ± 5.1 years) and 10 men (23 ± 3.7 years) aimed to match a target (9° in 180 ms) with ankle dorsiflexion. Participants performed 50 trials and we recorded the endpoint accuracy and the electromyographic (EMG) activity of the primary agonist (Tibialis Anterior; TA) and antagonist (Soleus; SOL) muscles. Women exhibited greater spatial inaccuracy (Position error: t = −2.65, P = 0.016) but not temporal inaccuracy relative to men. The motor output variability was similar for the two sexes (P \u3e 0.2). The spatial inaccuracy in women was related to greater variability in the coordination of the antagonistic muscles (R 2 0.19, P = 0.03). These findings suggest that women are spatially less accurate than men during fast goal-directed movements likely due to an altered activation of the antagonistic muscles

    Force dysmetria in spinocerebellar ataxia 6 correlates with functional capacity

    Get PDF
    Spinocerebellar ataxia type 6 (SCA6) is a genetic disease that causes pure cerebellar degeneration affecting walking, balance, and coordination. One of the main symptoms of SCA6 is dysmetria. The magnitude of dysmetria and its relation to functional capacity in SCA6 has not been studied. Our purpose was to quantify dysmetria and determine the relation between dysmetria and functional capacity in SCA6. Ten individuals diagnosed and genetically confirmed with SCA6 (63.7 ± 7.02yrs) and nine age-matched healthy controls (65.9 ± 8.5yrs) performed goal-directed isometric contractions with the ankle joint. Dysmetria was quantified as the force and time error during goal-directed contractions. SCA6 functional capacity was determined by ICARS and SARA clinical assessments. We found that SCA6 participants exhibited greater force dysmetria than healthy controls (P < 0.05), and reduced time dysmetria than healthy controls (P < 0.05). Only force dysmetria was significantly related to SCA6 functional capacity, as measured with ICARS kinetic score (R2 = 0.63), ICARS total score (R2 = 0.43), and SARA total score (R2 = 0.46). Our findings demonstrate that SCA6 exhibit force dysmetria and that force dysmetria is associated to SCA6 functional capacity. Quantifying force and time dysmetria in individuals with SCA6 could provide a more objective evaluation of the functional capacity and disease state in SCA6

    Strength or Motor Control: What Matters in High-Functioning Stroke?

    Get PDF
    Background: The two primary motor impairments that hinder function after stroke are declines in strength and motor control. The impact of motor impairments on functional capacity may vary with the severity of stroke motor impairments. In this study, we focus on high-functioning stroke individuals who experience mild to moderate motor impairments and often resume prior activities or return to work. These tasks require the ability to move independently, placing high demands on their functional mobility. Therefore, the purpose of this study was to quantify impairments in strength and motor control and their contribution to functional mobility in high-functioning stroke.Methods:Twenty-one high-functioning stroke individuals (Fugl Meyer Lower Extremity Score = 28.67 ± 4.85; Functional Activity Index = 28.47 ± 7.04) and 21 age-matched healthy controls participated in this study. To examine motor impairments in strength and motor control, participants performed the following tasks with the paretic ankle (1) maximum voluntary contractions (MVC) and (2) visuomotor tracking of a sinusoidal trajectory. Strength was quantified as the maximum force produced during ankle plantarflexion and dorsiflexion. Motor control was quantified as (a) the accuracy and (b) variability of ankle movement during the visuomotor tracking task. For functional mobility, participants performed (1) overground walking for 7 meters and (2) simulated driving task. Functional mobility was determined by walking speed, stride length variability, and braking reaction time.Results: Compared with the controls, the stroke group showed decreased plantarflexion strength, decreased accuracy, and increased variability of ankle movement. In addition, the stroke group demonstrated decreased walking speed, increased stride length variability, and increased braking reaction time. The multiple-linear regression model revealed that motor accuracy was a significant predictor of the walking speed and braking reaction time. Further, motor variability was a significant predictor of stride length variability. Finally, the dorsiflexion or plantarflexion strength did not predict walking speed, stride length variability or braking reaction time.Conclusions: The impairments in motor control but not strength predict functional deficits in walking and driving in high-functioning stroke individuals. Therefore, rehabilitation interventions assessing and improving motor control will potentially enhance functional outcomes in high-functioning stroke survivors

    A MSFD complementary approach for the assessment of pressures, knowledge and data gaps in Southern European Seas : the PERSEUS experience

    Get PDF
    PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional research themes targeting research topics that are requested to the achievement of GES. 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.peer-reviewe

    Frequency Modulation of Motor Unit Discharge Has Task-Dependent Effects on Fluctuations in Motor Output

    No full text
    and Roger M. Enoka. Frequency modulation of motor unit discharge has task-dependent effects on fluctuations in motor output. J Neurophysiol 94: 2878–2887, 2005. First published July 6, 2005; doi:10.1152/jn.00390.2005. The rate of change in the fluctuations in motor output differs during the performance of fatiguing contractions that involve different types of loads. The purpose of this study was to examine the contribution of frequency modulation of motor unit discharge to the fluctuations in the motor output during sustained contractions with the force and position tasks. In separate tests with the upper arm vertical and the elbow flexed to 1.57 rad, the seated subjects maintained either a constant upward force at the wrist (force task) or a constant elbow angle (position task). The force and position tasks were performed in random order at a target force equal to 3.6 � 2.1 % (mean � SD) of the maximal voluntary contraction (MVC) force above the recruitment threshold of an isolated motor unit from the biceps brachii. Each subject maintained the two tasks for an identical duration (161 � 93 s) at a mean target force of 22.4 � 13.6% MVC. As expected, the rate of increase in the fluctuations in motor output (force task: SD for detrended force; position task: SD for vertical acceleration) was greater for the position task than the force task (P � 0.001). The amplitude of the coefficient of variation (CV) and the power spectra for motor unit discharge were similar between tasks (P � 0.1) and did not change with time (P � 0.1), and could not explain the different rates of increase in motor output fluctuations for the two tasks. Nonetheless, frequency modulation of motor unit discharge differed during the two tasks and predicted (P � 0.001
    • …
    corecore