50 research outputs found

    Assessment of Global Longitudinal and Circumferential Strain Using Computed Tomography Feature Tracking: Intra-Individual Comparison with CMR Feature Tracking and Myocardial Tagging in Patients with Severe Aortic Stenosis

    Get PDF
    In this study, we used a single commercially available software solution to assess global longitudinal (GLS) and global circumferential strain (GCS) using cardiac computed tomography (CT) and cardiac magnetic resonance (CMR) feature tracking (FT). We compared agreement and reproducibility between these two methods and the reference standard, CMR tagging (TAG). Twenty-seven patients with severe aortic stenosis underwent CMR and cardiac CT examinations. FT analysis was performed using Medis suite version 3.0 (Leiden, The Netherlands) software. Segment (Medviso) software was used for GCS assessment from tagged images. There was a trend towards the underestimation of GLS by CT-FT when compared to CMR-FT (19.4 +/- 5.04 vs. 22.40 +/- 5.69, respectively; p = 0.065). GCS values between TAG, CT-FT, and CMR-FT were similar (p = 0.233). CMR-FT and CT-FT correlated closely for GLS (r = 0.686, p < 0.001) and GCS (r = 0.707, p < 0.001), while both of these methods correlated moderately with TAG for GCS (r = 0.479, p < 0.001 for CMR-FT vs. TAG; r = 0.548 for CT-FT vs. TAG). Intraobserver and interobserver agreement was excellent in all techniques. Our findings show that, in elderly patients with severe aortic stenosis (AS), the FT algorithm performs equally well in CMR and cardiac CT datasets for the assessment of GLS and GCS, both in terms of reproducibility and agreement with the gold standard, TAG

    Mid- to long-term cardiac magnetic resonance findings in elite athletes recovered from COVID-19 - results from one German Olympic medical center

    No full text
    Background There is a lack of cardiac magnetic resonance (CMR) data regarding mid- to long-term myocardial damage due to Covid-19 in elite athletes. Objective This study investigated mid-to long-term consequences of myocardial involvement after a Covid-19 infection in elite athletes. Methods Between January 2020 and October 2021, 27 athletes of the German Olympic centre Rhineland with confirmed Covid-19 infection were analyzed. 9 healthy non-athlete volunteers served as control. CMR was performed in mean 182 days (SD 99) after initial positive test result. Results CMR did not reveal any signs of acute myocarditis in regard to the current Lake Louise criteria or myocardial damage in any of the 26 elite athletes with previous Covid-19 infection. Nevertheless, 92 % of the athletes experienced a symptomatic course and 54 % reported lasting symptoms for more than 4 weeks. In one male athlete CMR revealed an arrhythmogenic right ventricular cardiomyopathy (ARVC) and this athlete was excluded from the study. Athletes had significantly enlarged left and right ventricle volumes and increased left ventricular myocardial mass in comparison to the healthy control group (LVEDVi 103.4 vs. 91.1 ml/m 2 p=0.031; RVEDVi 104.1 vs. 86.6 ml/m 2 p=0.007; and LVMi 59.0 vs. 46.2 g/m 2 p=0.002). Conclusion Our findings suggest that the risk for mid-to long-term myocardial damage seems to be very low to negligible in elite athletes. No conclusions can be drawn regarding myocardial injury in the acute phase of infection nor about possible long-term myocardial effects in the general population

    Mid- to long-term cardiac magnetic resonance findings in elite athletes recovered from COVID-19: results from an ongoing observational COVID-19 study at a German Olympic medical centre

    No full text
    INTRODUCTION: The cardiac magnetic resonance (CMR) data on mid- to long-term myocardial damage due to COVID-19 infections in elite athletes are scarce. Therefore, this study investigated the mid -to long-term consequences of myocardial involvement after a COVID-19 infection in elite athletes. MATERIALS AND METHODS: This study included 27 athletes at the German Olympic Centre North Rhine-Westphalia (NRW)/Rhineland with a confirmed previous COVID-19 infection between January 2020 and October 2021. The athletes were part of an ongoing observational COVID-19 study at the Institute of Cardiology and Sports Medicine Cologne at the German Sport University (DSHS).Nine healthy non-athletes with no prior COVID-19 illness served as controls. CMR was performed within a mean of 182 days (standard deviation [SD] 99) of the initial positive test result. RESULTS: CMR did not reveal any signs of acute myocarditis (according to the current Lake Louise criteria) or myocardial damage in any of the 26 elite athletes with previous COVID-19 infection. Of these athletes, 92% experienced a symptomatic course, and 54% reported symptoms lasting for more than 4 weeks. One male athlete was excluded from the analysis because CMR revealed an arrhythmogenic right ventricular cardiomyopathy (ARVC). Athletes had significantly enlarged left and right ventricle volumes and increased left ventricular myocardial mass in comparison to the healthy control group (LVEDVi 103.4 vs 91.1 ml/m2, p = 0.031; RVEDVi 104.1 vs 86.6 ml/m2, p = 0.007; LVMi 59.0 vs 46.2 g/m2, p = 0.002). Only two cases of elevated high-sensitivity-Troponin were documented; in one, the participant had previously engaged in high-intensity training, and in the other, CMR revealed a diagnosis of an arrhythmogenic cardiomyopathy. CONCLUSION: Our findings suggest that the risk for mid- to long-term myocardial damage is very low to negligible in elite athletes. Our results do not allow conclusions to be drawn regarding myocardial injury in the acute phase of infection nor about possible long-term myocardial effects in the general population
    corecore