110 research outputs found

    Stratification of a population of intracranial aneurysms using blood flow metrics.

    Get PDF
    Indices of the intra-aneurysm hemodynamic environment have been proposed as potentially indicative of their longitudinal outcome. To be useful, the indices need to be used to stratify large study populations and tested against known outcomes. The first objective was to compile the diverse hemodynamic indices reported in the literature. Furthermore, as morphology is often the only patient-specific information available in large population studies, the second objective was to assess how the ranking of aneurysms in a population is affected by the use of steady flow simulation as an approximation to pulsatile flow simulation, even though the former is clearly non-physiological. Sixteen indices of aneurysmal hemodynamics reported in the literature were compiled and refined where needed. It was noted that, in the literature, these global indices of flow were always time-averaged over the cardiac cycle. Steady and pulsatile flow simulations were performed on a population of 198 patient-specific and 30 idealised aneurysm models. All proposed hemodynamic indices were estimated and compared between the two simulations. It was found that steady and pulsatile flow simulations had a strong linear dependence (r ā‰„ 0.99 for 14 indices; r ā‰„ 0.97 for 2 others) and rank the aneurysms in an almost identical fashion (Ļ ā‰„ 0.99 for 14 indices; Ļ ā‰„ 0.96 for other 2). When geometry is the only measured piece of information available, stratification of aneurysms based on hemodynamic indices reduces to being a physically grounded substitute for stratification of aneurysms based on morphology. Under such circumstances, steady flow simulations may be just as effective as pulsatile flow simulation for estimating most key indices currently reported in the literature

    Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1

    Get PDF
    Subarachnoid hemorrhage (SAH) carries a 50% mortality rate. The extravasated erythrocytes that surround the brain contain heme, which, when released from damaged red blood cells, functions as a potent danger molecule that induces sterile tissue injury and organ dysfunction. Free heme is metabolized by heme oxygenase (HO), resulting in the generation of carbon monoxide (CO), a bioactive gas with potent immunomodulatory capabilities. Here, using a murine model of SAH, we demonstrated that expression of the inducible HO isoform (HO-1, encoded by Hmox1) in microglia is necessary to attenuate neuronal cell death, vasospasm, impaired cognitive function, and clearance of cerebral blood burden. Initiation of CO inhalation after SAH rescued the absence of microglial HO-1 and reduced injury by enhancing erythrophagocytosis. Evaluation of correlative human data revealed that patients with SAH have markedly higher HO-1 activity in cerebrospinal fluid (CSF) compared with that in patients with unruptured cerebral aneurysms. Furthermore, cisternal hematoma volume correlated with HO-1 activity and cytokine expression in the CSF of these patients. Collectively, we found that microglial HO-1 and the generation of CO are essential for effective elimination of blood and heme after SAH that otherwise leads to neuronal injury and cognitive dysfunction. Administration of CO may have potential as a therapeutic modality in patients with ruptured cerebral aneurysms

    Cranio-spinal migration of a metallic clip placed during arteriovenous malformation resection - A case report, review of the literature, and management strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microclip placement during AVM resection is generally accepted to be a safe practice in neurosurgery. Here, we describe an unusual complication involving cranio-spinal clip migration discovered five years after the initial AVM surgery.</p> <p>Case Presentation</p> <p>A 53-year-old man underwent resection of a superior vermian AVM that required the placement of two microclips during the procedure. Five years after surgery, the patient suffered from descending sensory radiculopathy that resolved spontaneously. The workup revealed cranio-spinal migration of one of the previously placed microclips.</p> <p>Conclusions</p> <p>AVM clip migration is a rare phenomenon; however, the diagnosis should be entertained in patients with posterior fossa instrumentation who suffer from unusual neurologic symptoms.</p
    • ā€¦
    corecore