5,168 research outputs found

    Public Transportation Ridership Levels

    Get PDF
    This article uses linear regression analysis to examine the determinants of public transportation ridership in over 100 U. S. cities in 2007. The primary determinant of ridership appears to be availability of public transportation service. In fact, the relationship is nearly one to one: a 1% increase in availability is associated with a 1% increase in ridership. The relative unimportance of price may be an indicator of the heavy subsidization of fares in most cities, leaving availability as the more effective policy tool to encourage use of public transport.identification, public transportation, ridership

    Towards precision distances and 3D dust maps using broadband Period--Magnitude relations of RR Lyrae stars

    Full text link
    We determine the period-magnitude relations of RR Lyrae stars in 13 photometric bandpasses from 0.4 to 12 {\mu}m using timeseries observations of 134 stars. The Bayesian formalism, extended from our previous work to include the effects of line-of-sight dust extinction, allows for the simultaneous inference of the posterior distribution of the mean absolute magnitude, slope of the period-magnitude power-law, and intrinsic scatter about a perfect power-law for each bandpass. In addition, the distance modulus and line-of-sight dust extinction to each RR Lyrae star in the calibration sample is determined, yielding a sample median fractional distance error of 0.66%. The intrinsic scatter in all bands appears to be larger than the photometric errors, except in WISE W1 (3.4 {\mu}m) and W2 (4.6 {\mu}m) where the photometric error (σ0.05\sigma \approx 0.05 mag) is to be comparable or larger than the intrinsic scatter. Additional observations at these wavelengths could improve the inferred distances to these sources further. As an application of the methodology, we infer the distance to the RRc-type star RZCep at low Galactic latitude (b=5.5b = 5.5^\circ) to be μ=8.0397±0.0123\mu=8.0397\pm0.0123 mag (405.4±2.3405.4\pm2.3 pc) with colour excess E(BV)=0.2461±0.0089E(B-V)=0.2461\pm0.0089 mag. This distance, equivalent to a parallax of 2467±142467\pm14 microarcsec, is consistent with the published HST parallax measurement but with an uncertainty that is 13 times smaller than the HST measurement. If our measurements (and methodology) hold up to scrutiny, the distances to these stars have been determined to an accuracy comparable to those expected with Gaia. As RR Lyrae are one of the primary components of the cosmic distance ladder, the achievement of sub-1% distance errors within a formalism that accounts for dust extinction may be considered a strong buttressing of the path to eventual 1% uncertainties in Hubble's constant.Comment: 21 pages, 29 figures, 2 tables, abstract abridged for arXiv. Comments solicited on referee report (received June 9, 2014) linked: https://gist.github.com/profjsb/c6c4e2f3a20ea02f1762 . Public archive of code used to generate results and figures: https://github.com/ckleinastro/period_luminosity_relation_fittin

    Radiation Pressure in Massive Star Formation

    Full text link
    Stars with masses of >~ 20 solar masses have short Kelvin times that enable them to reach the main sequence while still accreting from their natal clouds. The resulting nuclear burning produces a huge luminosity and a correspondingly large radiation pressure force on dust grains in the accreting gas. This effect may limit the upper mass of stars that can form by accretion. Indeed, simulations and analytic calculations to date have been unable to resolve the mystery of how stars of 50 solar masses and up form. We present two new ideas to solve the radiation pressure problem. First, we use three-dimensional radiation hydrodynamic adaptive mesh refinement simulations to study the collapse of massive cores. We find that in three dimensions a configuration in which radiation holds up an infalling envelope is Rayleigh-Taylor unstable, leading radiation driven bubbles to collapse and accretion to continue. We also present Monte Carlo radiative transfer calculations showing that the cavities created by protostellar winds provides a valve that allow radiation to escape the accreting envelope, further reducing the ability of radiation pressure to inhibit accretion.Comment: To be appear in "IAU 227: Massive Star Birth: A Crossroads of Astrophysics"; 6 pages, 1 figur

    The Kinematics of Molecular Cloud Cores in the Presence of Driven and Decaying Turbulence: Comparisons with Observations

    Get PDF
    In this study we investigate the formation and properties of prestellar and protostellar cores using hydrodynamic, self-gravitating Adaptive Mesh Refinement simulations, comparing the cases where turbulence is continually driven and where it is allowed to decay. We model observations of these cores in the C18^{18}O(21)(2\to 1), NH3(1,1)_3(1,1), and N2_2H+(10)^+(1\to 0) lines, and from the simulated observations we measure the linewidths of individual cores, the linewidths of the surrounding gas, and the motions of the cores relative to one another. Some of these distributions are significantly different in the driven and decaying runs, making them potential diagnostics for determining whether the turbulence in observed star-forming clouds is driven or decaying. Comparing our simulations with observed cores in the Perseus and ρ\rho Ophiuchus clouds shows reasonably good agreement between the observed and simulated core-to-core velocity dispersions for both the driven and decaying cases. However, we find that the linewidths through protostellar cores in both simulations are too large compared to the observations. The disagreement is noticably worse for the decaying simulation, in which cores show highly supersonic infall signatures in their centers that decrease toward their edges, a pattern not seen in the observed regions. This result gives some support to the use of driven turbulence for modeling regions of star formation, but reaching a firm conclusion on the relative merits of driven or decaying turbulence will require more complete data on a larger sample of clouds as well as simulations that include magnetic fields, outflows, and thermal feedback from the protostars.Comment: 18 pages, 12 figures, accepted to A

    Molecular Line Emission from Massive Protostellar Disks: Predictions for ALMA and the EVLA

    Get PDF
    We compute the molecular line emission of massive protostellar disks by solving the equation of radiative transfer through the cores and disks produced by the recent radiation-hydrodynamic simulations of Krumholz, Klein, & McKee. We find that in several representative lines the disks show brightness temperatures of hundreds of Kelvin over velocity channels ~10 km s^-1 wide, extending over regions hundreds of AU in size. We process the computed intensities to model the performance of next-generation radio and submillimeter telescopes. Our calculations show that observations using facilities such as the EVLA and ALMA should be able to detect massive protostellar disks and measure their rotation curves, at least in the nearest massive star-forming regions. They should also detect significant sub-structure and non-axisymmetry in the disks, and in some cases may be able to detect star-disk velocity offsets of a few km s^-1, both of which are the result of strong gravitational instability in massive disks. We use our simulations to explore the strengths and weaknesses of different observational techniques, and we also discuss how observations of massive protostellar disks may be used to distinguish between alternative models of massive star formation.Comment: 15 pages, 9 figures, emulateapj format, accepted for publication in ApJ. Resolution of figures severely degraded to fit within size limits. Download the full paper from http://www.astro.princeton.edu/~krumholz/recent.htm

    Probing the distance and morphology of the Large Magellanic Cloud with RR Lyrae stars

    Full text link
    We present a Bayesian analysis of the distances to 15,040 Large Magellanic Cloud (LMC) RR Lyrae stars using VV- and II-band light curves from the Optical Gravitational Lensing Experiment, in combination with new zz-band observations from the Dark Energy Camera. Our median individual RR Lyrae distance statistical error is 1.89 kpc (fractional distance error of 3.76 per cent). We present three-dimensional contour plots of the number density of LMC RR Lyrae stars and measure a distance to the core LMC RR Lyrae centre of 50.2482±0.0546(statistical)±0.4628(systematic)kpc{50.2482\pm0.0546 {\rm(statistical)} \pm0.4628 {\rm(systematic)} {\rm kpc}}, equivalently μLMC=18.5056±0.0024(statistical)±0.02(systematic){\mu_{\rm LMC}=18.5056\pm0.0024 {\rm(statistical)} \pm0.02 {\rm(systematic)}}. This finding is statistically consistent with and four times more precise than the canonical value determined by a recent meta-analysis of 233 separate LMC distance determinations. We also measure a maximum tilt angle of 11.84±0.8011.84^{\circ}\pm0.80^{\circ} at a position angle of 6262^\circ, and report highly precise constraints on the VV, II, and zz RR Lyrae period--magnitude relations. The full dataset of observed mean-flux magnitudes, derived colour excess E(VI){E(V-I)} values, and fitted distances for the 15,040 RR Lyrae stars produced through this work is made available through the publication's associated online data.Comment: 7 pages, 8 figure
    corecore