6,451 research outputs found

    Determination of new coefficients in the angular momentum and energy fluxes at infinity to 9PN for eccentric Schwarzschild extreme-mass-ratio inspirals using mode-by-mode fitting

    Get PDF
    We present an extension of work in an earlier paper showing high precision comparisons between black hole perturbation theory and post-Newtonian (PN) theory in their region of overlapping validity for bound, eccentric-orbit, Schwarzschild extreme-mass-ratio inspirals. As before we apply a numerical fitting scheme to extract eccentricity coefficients in the PN expansion of the gravitational wave fluxes, which are then converted to exact analytic form using an integer-relation algorithm. In this work, however, we fit to individual lmnlmn modes to exploit simplifying factorizations that lie therein. Since the previous paper focused solely on the energy flux, here we concentrate initially on analyzing the angular momentum flux to infinity. A first step involves finding convenient forms for hereditary contributions to the flux at low-PN order, analogous to similar terms worked out previously for the energy flux. We then apply the upgraded techniques to find new PN terms through 9PN order and (at many PN orders) to e30e^{30} in the power series in eccentricity. With the new approach applied to angular momentum fluxes, we return to the energy fluxes at infinity to extend those previous results. Like before, the underlying method uses a \textsc{Mathematica} code based on use of the Mano-Suzuki-Takasugi (MST) function expansion formalism to represent gravitational perturbations and spectral source integration (SSI) to find numerical results at arbitrarily high precision.Comment: 36 pages, 1 figur

    A New Feature in the Spectrum of the Superluminous LMC Supergiant HDE 269896

    Get PDF
    We have found strong selective emission of the N II 5000A complex in the spectrum of the LMC hypergiant HDE 269896, ON9.7 Ia+^+. Since this object also has anomalously strong He II λ\lambda4686 emission for its spectral type, an unusually wide range of ionization in its extended atmosphere is indicated. The published model of this spectrum does not reproduce these emission features, but we show that increased nitrogen and helium abundances, together with small changes in other model parameters, can do so. The morphological and possible evolutionary relationships of HDE 269896, as illuminated by the new spectral features, to other denizens of the OB Zoo are discussed. This object may be in an immediate pre-WNVL (Very Late WN) state, which is in turn the quiescent state of at least some Luminous Blue Variables. More generally, the N II spectrum in HDE 269896 provides a striking demonstration of the occurrence of two distinctly different kinds of line behavior in O-type spectra: normal absorption lines that develop P Cygni profiles at high wind densities, and selective emission lines from the same ions that do not. Further analysis of these features will advance understanding of both atomic physics and extreme stellar atmospheres.Comment: 12 pages, 2 tables, 4 figures (quality downgraded due to size constraints); to appear in PASP January 200

    Fowl communicate the size, speed and proximity of avian stimuli through graded structure in referential alarm calls

    Get PDF
    Many animals produce alarm calls that warn conspecifics about predators. In some species, alarm calls communicate continuous traits associated with a predator encounter, such as its level of threat. In other species, alarm calls communicate categorical traits, such as predator class (e.g. avian versus terrestrial), and are consequently considered functionally referential. In theory, functionally referential alarm calls can simultaneously communicate continuously distributed traits, though examples of such calls are rare. Such dual-function calls could be adaptive because they would enable receivers to tailor their responses to a specific predator class, as well as to more subtle characteristics of individual attacks. Here, we tested whether male fowl (Gallus gallus) communicate continuous variation in avian stimuli through graded structure in their functionally referential aerial alarm calls. In the first experiment, we held male fowl in an indoor test cage and allowed them to view wild birds flying past a window. We recorded their alarm calls and compared the structure to the size, speed, and proximity of the eliciting stimuli. Stimuli that appeared closer, larger, and faster elicited alarm calls that were shorter, louder, clearer, and lower in frequency. In the second experiment, we broadcast alarm calls to foraging females and compared their responses to the graded structural changes documented earlier. Females exhibited greater initial responses and finished feeding later in response to louder alarm calls. Together, these results show that fowl communicate the size, speed and proximity of avian stimuli through graded variation in their functionally referential aerial alarm calls

    Two-dimensional colloidal fluids exhibiting pattern formation

    Get PDF
    Fluids with competing short range attraction and long range repulsive interactions between the particles can exhibit a variety of microphase separated structures. We develop a lattice-gas (generalised Ising) model and analyse the phase diagram using Monte Carlo computer simulations and also with density functional theory (DFT). The DFT predictions for the structures formed are in good agreement with the results from the simulations, which occur in the portion of the phase diagram where the theory predicts the uniform fluid to be linearly unstable. However, the mean-field DFT does not correctly describe the transitions between the different morphologies, which the simulations show to be analogous to micelle formation. We determine how the heat capacity varies as the model parameters are changed. There are peaks in the heat capacity at state points where the morphology changes occur. We also map the lattice model onto a continuum DFT that facilitates a simplification of the stability analysis of the uniform fluid.Comment: 13 pages, 15 figure

    Tidal heating and torquing of the primary black hole in eccentric-orbit, non-spinning extreme-mass-ratio inspirals to 22PN order

    Full text link
    We calculate the high-order post-Newtonian (PN) expansion of the energy and angular momentum fluxes onto the horizon of a nonspinning black hole primary in eccentric-orbit extreme-mass-ratio inspirals. The first-order black hole perturbation theory calculation uses \textsc{Mathematica} and makes an analytic expansion of the Regge-Wheeler-Zerilli functions using the Mano-Suzuki-Takasugi formalism. The horizon absorption, or tidal heating and torquing, is calculated to 18PN relative to the leading horizon flux (i.e., 22PN order relative to the leading quadrupole flux at infinity). Each PN term is a function of eccentricity ee and is calculated as a series to e10e^{10}. A second expansion, to 10PN horizon-relative order (or 14PN relative to the flux at infinity), is computed deeper in eccentricity to e20e^{20}. A number of resummed closed-form functions are found for the low PN terms in the series. Using a separate Teukolsky perturbation code, numerical comparisons are made to test how accurate the PN expansion is when extended to a close p=10p=10 orbit. We find that the horizon absorption expansion is not as convergent as a previously computed infinity-side flux expansion. However, given that the horizon absorption is suppressed by 4PN, useful results can be obtained even with an orbit as tight as this for e≤1/2e \le 1/2. Combining the present results with our earlier expansion of the fluxes to infinity makes the knowledge of the total dissipation known to 19PN for eccentric-orbit nonspinning EMRIs.Comment: 19 pages, 1 figur

    Relativistic Corrections in White Dwarf Asteroseismology

    Full text link
    With the precision now afforded by modern space-based photometric observations from the retired K2 and current TESS missions, the effects of general relativity (GR) may be detectable in the light curves of pulsating white dwarfs (WDs). Almost all WD models are calculated using a Newtonian description of gravity and hydrodynamics. To determine if inclusion of GR leads to observable effects, we used idealized models of compact stars and made side-by-side comparison of mode periods computed using a (i) Newtonian and (ii) GR description of the equilibrium structure and nonradial pulsations. For application to white dwarfs, it is only necessary to include the first post-Newtonian (1PN) approximation to GR. The mathematical nature of the linear nonradial pulsation problem is then qualitatively unchanged and the GR corrections can be written as extensions of the classic Dziembowski equations. As such, GR effects might easily be included in existing asteroseismology codes. The idealized stellar models are (i) \pn1 relativistic polytropes and (ii) stars with cold degenerate-electron equation of state featuring a near-surface chemical transition from μe=2\mu_e = 2 to μe=1\mu_e = 1, simulating a surface hydrogen layer. Comparison of Newtonian and 1PN normal mode periods reveals fractional differences on the order of the surface gravitational redshift zz. For a typical WD, this fractional difference is ∼10−4\sim 10^{-4} and is greater than the period uncertainty σΠ/Π\sigma_{\Pi}/\Pi of many white dwarf pulsation modes observed by TESS. A consistent theoretical modeling of periods observed in these stars should in principle include GR effects to 1PN order

    The Protostellar Mass Function

    Full text link
    The protostellar mass function (PMF) is the Present-Day Mass Function of the protostars in a region of star formation. It is determined by the initial mass function weighted by the accretion time. The PMF thus depends on the accretion history of protostars and in principle provides a powerful tool for observationally distinguishing different protostellar accretion models. We consider three basic models here: the Isothermal Sphere model (Shu 1977), the Turbulent Core model (McKee & Tan 2003), and an approximate representation of the Competitive Accretion model (Bonnell et al. 1997, 2001a). We also consider modified versions of these accretion models, in which the accretion rate tapers off linearly in time. Finally, we allow for an overall acceleration in the rate of star formation. At present, it is not possible to directly determine the PMF since protostellar masses are not currently measurable. We carry out an approximate comparison of predicted PMFs with observation by using the theory to infer the conditions in the ambient medium in several star-forming regions. Tapered and accelerating models generally agree better with observed star-formation times than models without tapering or acceleration, but uncertainties in the accretion models and in the observations do not allow one to rule out any of the proposed models at present. The PMF is essential for the calculation of the Protostellar Luminosity Function, however, and this enables stronger conclusions to be drawn (Offner & McKee 2010).Comment: 16 pages, 8 figures, published in Ap

    Quantitative Spectroscopy of Blue Supergiants in Metal-Poor Dwarf Galaxy NGC 3109

    Full text link
    We present a quantitative analysis of the low-resolution (4.5 A) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent temperature indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B type BSGs analyzed by Evans et al. (2007) to derive the distance to NGC 3109 using the Flux-weighted Gravity-Luminosity Relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [Z] = -0.67 +/- 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. (2007) based on the oxygen abundances of early-B supergiants ([Z] = -0.93 +/- 0.07), suggesting a low alpha/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of HII regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 +/- 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch (TRGB) distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.Comment: 50 pages, 23 figures; Accepted for publication in The Astrophysical Journa
    • …
    corecore