8 research outputs found

    Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA<sub>2</sub>) Discovered through X‑ray Fragment Screening

    No full text
    Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA<sub>2</sub>) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA<sub>2</sub> in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues

    Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA<sub>2</sub>) Discovered through X‑ray Fragment Screening

    No full text
    Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA<sub>2</sub>) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA<sub>2</sub> in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues
    corecore