1,511 research outputs found

    CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow

    Get PDF
    L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ~2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher velocity shocks or repeatedly-shocked material, such as SiO and HCN. Here, we present high spatial resolution (~3") maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with CARMA. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code RADEX (Van der Tak et al. 2007). We find the east/west chemical differentiation in C2 may be explained by the contrast of the shock's interaction with either cold, pristine material or warm, previously-shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.Comment: Accepted for publication in the Astrophysical Journa

    Cytotoxicity of Atriplex confertifolia

    Get PDF
    The search for cancer treatment continues to be a global effort. As part of this global effort, many natural products have been tested against cancer cell lines, mostly from tropically located plants. This study reports that extracts of Atriplex confertifolia (Torr. and Frem.) S. Watson (Chenopodiaceae), a native North American plant (also known as shadscale or saltbush), has significant bioactivity against human breast cancer cell lines MCF-7, MDA-MB 435, MDA-MB 231, and HeLa cells (cervical cancer cells). The bioactivity of A. confertifolia extracts on these cells lines was compared to an FDA-approved cancer drug (Onxol®) and an industry-standard leukocyte control cell line. Active portions of the extracts were found primarily in the polar fractions of the plant. A dose-response curve of the extracts displayed significant cell death similar to Onxol®. The plant extracts did not significantly inhibit the viability of the leukocyte cell line. In a timed study, over 90% of cell lines MDA-MB 435 and HeLa died after 24 hours. Cell death appears to result from apoptosis

    Adiposity, Cardiometabolic Risk, and Vitamin D Status: The Framingham Heart Study

    Get PDF
    OBJECTIVE: Because vitamin D deficiency is associated with a variety of chronic diseases, understanding the characteristics that promote vitamin D deficiency in otherwise healthy adults could have important clinical implications. Few studies relating vitamin D deficiency to obesity have included direct measures of adiposity. Furthermore, the degree to which vitamin D is associated with metabolic traits after adjusting for adiposity measures is unclear. RESEARCH DESIGN AND METHODS: We investigated the relations of serum 25-hydroxyvitamin D (25[OH]D) concentrations with indexes of cardiometabolic risk in 3,890 nondiabetic individuals; 1,882 had subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes measured by multidetector computed tomography (CT). RESULTS: In multivariable-adjusted regression models, 25(OH)D was inversely associated with winter season, waist circumference, and serum insulin (P < 0.005 for all). In models further adjusted for CT measures, 25(OH)D was inversely related to SAT (−1.1 ng/ml per SD increment in SAT, P = 0.016) and VAT (−2.3 ng/ml per SD, P < 0.0001). The association of 25(OH)D with insulin resistance measures became nonsignificant after adjustment for VAT. Higher adiposity volumes were correlated with lower 25(OH)D across different categories of BMI, including in lean individuals (BMI <25 kg/m2). The prevalence of vitamin D deficiency (25[OH]D <20 ng/ml) was threefold higher in those with high SAT and high VAT than in those with low SAT and low VAT (P < 0.0001). CONCLUSIONS: Vitamin D status is strongly associated with variation in subcutaneous and especially visceral adiposity. The mechanisms by which adiposity promotes vitamin D deficiency warrant further study.National Institutes of Health's National Heart, Lung, and Blood Institute (N01-HC-25195, R01-DK-80739): American Heart Associatio

    A Synthetic Genetic Edge Detection Program

    Get PDF
    SummaryEdge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks

    Tuneable peptide cross-linked nanogels for enzyme-triggered protein delivery

    Get PDF
    Many diseases are associated with the dysregulated activity of enzymes, such as matrix metalloproteinases (MMPs). This dysregulation can be leveraged in drug delivery to achieve disease- or site-specific cargo release. Self-assembled polymeric nanoparticles are versatile drug carrier materials due to the accessible diversity of polymer chemistry. However, efficient loading of sensitive cargo, such as proteins, and introducing functional enzyme-responsive behaviour remain challenging. Herein, peptide-crosslinked, temperature-sensitive nanogels for protein delivery were designed to respond to MMP-7, which is overexpressed in many pathologies including cancer and inflammatory diseases. The incorporation of N-cyclopropylacrylamide (NCPAM) into N-isopropylacrylamide (NIPAM)-based copolymers enabled us to tune the polymer lower critical solution temperature from 33 to 44 °C, allowing the encapsulation of protein cargo and nanogel-crosslinking at slightly elevated temperatures. This approach resulted in nanogels that were held together by MMP-sensitive peptides for enzyme-specific protein delivery. We employed a combination of cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle neutron scattering (SANS), and fluorescence correlation spectroscopy (FCS) to precisely decipher the morphology, self-assembly mechanism, enzyme-responsiveness, and model protein loading/release properties of our nanogel platform. Simple variation of the peptide linker sequence and combining multiple different crosslinkers will enable us to adjust our platform to target specific diseases in the future

    Non-detection of HC_(11)N towards TMC-1: constraining the chemistry of large carbon-chain molecules

    Get PDF
    Bell et al. reported the first detection of the cyanopolyyne HC_(11)N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC_9N and HC_(11)N towards TMC-1. Although we find an HC_9N column density consistent with previous values, HC_(11)N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion–dipole interactions, we are not able to explain the non-detection of HC_(11)N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules
    corecore