9 research outputs found

    Machine-Learning Accelerated First-Principles Accurate Modeling of the Solid–Liquid Phase Transition in MgO under Mantle Conditions

    No full text
    While accurate measurements of MgO under extreme high-pressure conditions are needed to understand and model planetary behavior, these studies are challenging from both experimental and computational modeling perspectives. Herein, we accelerate density functional theory (DFT) accurate calculations using deep neural network potentials (DNPs) trained over multiple phases and study the melting behavior of MgO via the two-phase coexistence (TPC) approach at 0–300 GPa and ≀9600 K. The resulting DNP–TPC melting curve is in excellent agreement with existing experimental studies. We show that the mitigation of finite-size effects that typically skew the predicted melting temperatures in DFT–TPC simulations in excess of several hundred kelvin requires models with ∌16 000 atoms and >100 ps molecular dynamics trajectories. In addition, the DNP can successfully describe MgO metallization well at increased pressures that are captured by DFT but missed by classical interatomic potentials

    Seedless Initiation as an Efficient, Sustainable Route to Anisotropic Gold Nanoparticles

    No full text
    Seedless initiation has been used as a simple and sustainable alternative to seed-mediated production of two canonical anisotropic gold nanoparticles: nanorods and nanoprisms. The concentration of reducing agent during the nucleation event was found to influence the resulting product morphology, producing nanorods with lengths from 30 to 630 nm and triangular or hexagonal prisms with vertex-to-vertex lengths ranging from 120 to over 700 nm. The seedless approach is then used to eliminate several chemical reagents and reactions steps from classic particle preparations while achieving almost identical nanoparticle products and product yields. Our results shed light on factors that influence (or do not influence) the evolution of gold nanoparticle shape and present a dramatically more efficient route to obtaining these architectures. Specifically, using these methods reduces the total amount of reagent needed to produce nanorods and nanoprisms by as much as 90 wt % and, to the best of our knowledge, has yielded the first report of spectroscopically discernible, colloidal gold nanoplates synthesized using a seedless methodology

    Decoupling Mechanisms of Platinum Deposition on Colloidal Gold Nanoparticle Substrates

    No full text
    Nanoscale platinum materials are essential components in many technologies, including catalytic converters and fuel cells. Combining Pt with other metals can enhance its performance and/or decrease the cost of the technology, and a wide range of strategies have been developed to capitalize on these advantages. However, wet chemical synthesis of Pt-containing nanoparticles (NPs) is challenging due to the diverse metal segregation and metal–metal redox processes possible under closely related experimental conditions. Here, we elucidate the relationship between Pt­(IV) speciation and the formation of well-known NP motifs, including frame-like and core–shell morphologies, in Au–Pt systems. We leverage insights gained from these studies to induce a controlled transition from redox- to surface chemistry-mediated growth pathways, resulting in the formation of Pt NPs in epitaxial contact and linear alignment along a gold nanoprism substrate. Mechanistic investigations using a combination of electron microscopy and <sup>195</sup>Pt NMR spectroscopy identify Pt­(IV) speciation as a crucial parameter for understanding and controlling the formation of Pt-containing NPs. Combined, these findings point toward fully bottom-up methods for deposition and organization of NPs on colloidal plasmonic substrates

    Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III)

    No full text
    Here, we demonstrate efficient energy transfer from near-infrared-emitting <i>ortho</i>-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium­(III) cations. These functional materials combine the high molar absorptivity (1.21 × 10<sup>6</sup> M<sup>–1</sup> cm<sup>–1</sup>) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium­(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium­(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems

    Effects of Ligand Geometry on the Photophysical Properties of Photoluminescent Eu(III) and Sm(III) 1‑Hydroxypyridin-2-one Complexes in Aqueous Solution

    No full text
    A series of 10 tetradentate 1-hydroxy-pyridin-2-one (1,2-HOPO) ligands and corresponding eight-coordinated photoluminescent Eu­(III) and Sm­(III) complexes were prepared. Generally, the ligands differ by the linear (nLI) aliphatic linker length, from 2 to 8 methylene units between the bidentate 1,2-HOPO chelator units. The photoluminescent quantum yields (Ί<sub>tot</sub>) were found to vary with the linker length, and the same trend was observed for the Eu­(III) and Sm­(III) complexes. The 2LI and 5LI bridged complexes are the brightest (Ί<sub>tot</sub>xΔ). The change in ligand wrapping pattern between 2LI and 5LI complexes observed by X-ray diffraction (XRD) is further supported by density functional theory (DFT) calculations. The bimodal Ί<sub>tot</sub> trends of the Eu­(III) and Sm­(III) complexes are rationalized by the change in ligand wrapping pattern as the bridge (<i>n</i>LI) is increased in length

    Effects of Ligand Geometry on the Photophysical Properties of Photoluminescent Eu(III) and Sm(III) 1‑Hydroxypyridin-2-one Complexes in Aqueous Solution

    No full text
    A series of 10 tetradentate 1-hydroxy-pyridin-2-one (1,2-HOPO) ligands and corresponding eight-coordinated photoluminescent Eu­(III) and Sm­(III) complexes were prepared. Generally, the ligands differ by the linear (nLI) aliphatic linker length, from 2 to 8 methylene units between the bidentate 1,2-HOPO chelator units. The photoluminescent quantum yields (Ί<sub>tot</sub>) were found to vary with the linker length, and the same trend was observed for the Eu­(III) and Sm­(III) complexes. The 2LI and 5LI bridged complexes are the brightest (Ί<sub>tot</sub>xΔ). The change in ligand wrapping pattern between 2LI and 5LI complexes observed by X-ray diffraction (XRD) is further supported by density functional theory (DFT) calculations. The bimodal Ί<sub>tot</sub> trends of the Eu­(III) and Sm­(III) complexes are rationalized by the change in ligand wrapping pattern as the bridge (<i>n</i>LI) is increased in length

    Ligand-Mediated “Turn On,” High Quantum Yield Near-Infrared Emission in Small Gold Nanoparticles

    No full text
    Small gold nanoparticles (∌1.4–2.2 nm core diameters) exist at an exciting interface between molecular and metallic electronic structures. These particles have the potential to elucidate fundamental physical principles driving nanoscale phenomena and to be useful in a wide range of applications. Here, we study the optoelectronic properties of aqueous, phosphine-terminated gold nanoparticles (core diameter = 1.7 ± 0.4 nm) after ligand exchange with a variety of sulfur-containing molecules. No emission is observed from these particles prior to ligand exchange, however the introduction of sulfur-containing ligands initiates photoluminescence. Further, small changes in sulfur substituents produce significant changes in nanoparticle photoluminescence features including quantum yield, which ranges from 0.13 to 3.65% depending on substituent. Interestingly, smaller ligands produce the most intense, highest energy, narrowest, and longest-lived emissions. Radiative lifetime measurements for these gold nanoparticle conjugates range from 59 to 2590 ÎŒs, indicating that even minor changes to the ligand substituent fundamentally alter the electronic properties of the luminophore itself. These results isolate the critical role of surface chemistry in the photoluminescence of small metal nanoparticles and largely rule out other mechanisms such as discrete (Au­(I)SR)<sub><i>n</i></sub> impurities, differences in ligand densities, and/or core diameters. Taken together, these experiments provide important mechanistic insight into the relationship between gold nanoparticle near-infrared emission and pendant ligand architectures, as well as demonstrate the pivotal role of metal nanoparticle surface chemistry in tuning and optimizing emergent optoelectronic features from these nanostructures

    Circularly Polarized Luminescence of Curium: A New Characterization of the 5f Actinide Complexes

    No full text
    A key distinction between the lanthanide (4f) and the actinide (5f) transition elements is the increased role of f-orbital covalent bonding in the latter. Circularly polarized luminescence (CPL) is an uncommon but powerful spectroscopy which probes the electronic structure of chiral, luminescent complexes or molecules. While there are many examples of CPL spectra for the lanthanides, this report is the first for an actinide. Two chiral, octadentate chelating ligands based on orthoamide phenol (IAM) were used to complex curium­(III). While the radioactivity kept the amount of material limited to micromole amounts, spectra of the highly luminescent complexes showed significant emission peak shifts between the different complexes, consistent with ligand field effects previously observed in luminescence spectra

    Description and Role of Bimetallic Prenucleation Species in the Formation of Small Nanoparticle Alloys

    No full text
    We report the identification, description, and role of multinuclear metal–thiolate complexes in aqueous Au–Cu nanoparticle syntheses. The structure of these species was characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy techniques. The observed structures were found to be in good agreement with thermodynamic growth trends predicted by first-principles calculations. The presence of metal−thiolate complexes is then shown to be critical for the formation of alloyed Au–Cu architectures in the small nanoparticle regime (diameter ∌2 nm). In the absence of mixed metal–thiolate precursors, nanoparticles form with a Cu–S shell and a Au-rich interior. Taken together, these results demonstrate that prenucleation species, which are discrete molecular precursors distinct from both initial reagents and final particle products, may provide an important new synthetic route to control final metal nanoparticle composition and composition architectures
    corecore