590 research outputs found

    Environmental Impact Assessment: Detecting Changes in Fish Community Structure in Response to Disturbance with an Asymmetric Multivariate BACI Sampling Design

    Get PDF
    One of the primary challenges to detecting anthropogenic environmental impacts is the high degree of spatial and temporal variability inherent in natural systems. Planned or routine events that result in disturbance to populations and communities provide an opportunity for scientists to apply well-replicated and statistically powerful sampling designs to assess subsequent biological effects. For example, a thick layer of sessile invertebrates is the prominent biotic feature of intertidal and shallow subtidal portions of offshore petroleum platforms in southern California. Given the central role of such invertebrates in providing food and shelter, their presence can reasonably be expected to influence associated fish community structure. At one platform on the San Pedro Shelf, invertebrate biomass was completely removed from support pilings and horizontal crossmembers to a depth of 20 m with high-pressure water during a standard “hydrocleaning” event in November 2007. Three nearby platforms remained undisturbed, providing a unique opportunity to test for disturbance-related changes in the local fish assemblage and the overall time course of community recovery. The potential impact of the abrupt and intense removal of the invertebrate layer was assessed with survey data collected periodically for one year prior- and one year post-hydrocleaning in a modified Before-After-Control-Impact (BACI) design. Asymmetrical multivariate analyses of variance revealed a significant effect of disturbance to fish, driven largely by reductions in the abundance of numerically dominant blacksmith (Chromis punctipinnis). Nevertheless, the system was surprisingly resilient, recovering to pre-disturbance conditions within ten months. Our results demonstrate that a well-replicated BACI sampling design can detect even subtle biological changes in response to disturbance, a key step towards developing a mechanistic understanding of community disassembly in the face of increasingly frequent and intense perturbations

    The Economics of Naked Short Selling

    Get PDF

    Bubbling AdS Black Holes

    Get PDF
    We explore the non-BPS analog of `AdS bubbles', which are regular spherically symmetric 1/2 BPS geometries in type IIB supergravity. They have regular horizons and can be thought of as bubbling generalizations of non-extremal AdS black hole solutions in five-dimensional gauged supergravity. Due to the appearance of the Heun equation even at the linearized level, various approximation and numerical methods are needed in order to extract information about this system. We study how the vacuum expectation value and mass of a particular dimension two chiral primary operator depend on the temperature and chemical potential of the thermal Yang-Mills theory. In addition, the mass of the bubbling AdS black holes is computed. As is shown numerically, there are also non-BPS solitonic bubbles which are completely regular and arise from continuous deformations of BPS AdS bubbles.Comment: 37 pages, 2 figure

    The atypical chemokine receptor Ackr2 constrains NK cell migratory activity and promotes metastasis

    Get PDF
    Chemokines have been shown to be essential players in a range of cancer contexts. In this study, we demonstrate that mice deficient in the atypical chemokine receptor Ackr2 display impaired development of metastasis in vivo in both cell line and spontaneous models. Further analysis reveals that this relates to increased expression of the chemokine receptor CCR2, specifically by KLRG1+ NK cells from the Ackr2−/− mice. This leads to increased recruitment of KLRG1+ NK cells to CCL2-expressing tumors and enhanced tumor killing. Together, these data indicate that Ackr2 limits the expression of CCR2 on NK cells and restricts their tumoricidal activity. Our data have important implications for our understanding of the roles for chemokines in the metastatic process and highlight Ackr2 and CCR2 as potentially manipulable therapeutic targets in metastasis

    Schwinger-Keldysh Propagators from AdS/CFT Correspondence

    Get PDF
    We demonstrate how to compute real-time Green's functions for a class of finite temperature field theories from their AdS gravity duals. In particular, we reproduce the two-by-two Schwinger-Keldysh matrix propagator from a gravity calculation. Our methods should work also for computing higher point Lorentzian signature correlators. We elucidate the boundary condition subtleties which hampered previous efforts to build a Lorentzian-signature AdS/CFT correspondence. For two-point correlators, our construction is automatically equivalent to the previously formulated prescription for the retarded propagator.Comment: 16 pages, 1 figure, references added; to appear in JHE

    Global trends of hand and wrist trauma: A systematic analysis of fracture and digit amputation using the Global Burden of Disease 2017 Study

    Get PDF
    Background: As global rates of mortality decrease, rates of non-fatal injury have increased, particularly in low Socio-demographic Index (SDI) nations. We hypothesised this global pattern of non-fatal injury would be demonstrated in regard to bony hand and wrist trauma over the 27-year study period. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 was used to estimate prevalence, age-standardised incidence and years lived with disability for hand trauma in 195 countries from 1990 to 2017. Individual injuries included hand and wrist fractures, thumb amputations and non-thumb digit amputations. Results: The global incidence of hand trauma has only modestly decreased since 1990. In 2017, the age-standardised incidence of hand and wrist fractures was 179 per 100 000 (95% uncertainty interval (UI) 146 to 217), whereas the less common injuries of thumb and non-thumb digit amputation were 24 (95% UI 17 to 34) and 56 (95% UI 43 to 74) per 100 000, respectively. Rates of injury vary greatly by region, and improvements have not been equally distributed. The highest burden of hand trauma is currently reported in high SDI countries. However, low-middle and middle SDI countries have increasing rates of hand trauma by as much at 25%. Conclusions: Certain regions are noted to have high rates of hand trauma over the study period. Low-middle and middle SDI countries, however, have demonstrated increasing rates of fracture and amputation over the last 27 years. This trend is concerning as access to quality and subspecialised surgical hand care is often limiting in these resource-limited regions. keywords: burden of disease, descriptive epidemiology, hand injur

    Structural model of dodecameric heat-shock protein Hsp21:Flexible N-terminal arms interact with client proteins while C-terminal tails maintain the dodecamer and chaperone activity

    Get PDF
    Small heat-shock proteins (sHsps) prevent aggregation of thermosensitive client proteins in a first line of defense against cellular stress. The mechanisms by which they perform this function have been hard to define due to limited structural information; currently, there is only one high-resolution structure of a plant sHsp published, that of the cytosolic Hsp16.9. We took interest in Hsp21, a chloroplast-localized sHsp crucial for plant stress resistance, which has even longer N-terminal arms than Hsp16.9, with a functionally important and conserved methionine-rich motif. To provide a framework for investigating structure-function relationships of Hsp21 and understanding these sequence variations, we developed a structural model of Hsp21 based on homology modeling, cryo-EM, cross-linking mass spectrometry, NMR, and small-angle X-ray scattering. Our data suggest a dodecameric arrangement of two trimer-of-dimer discs stabilized by the C-terminal tails, possibly through tail-to-tail interactions between the discs, mediated through extended IXVXI motifs. Our model further suggests that six N-terminal arms are located on the outside of the dodecamer, accessible for interaction with client proteins, and distinct from previous undefined or inwardly facing arms. To test the importance of the IXVXI motif, we created the point mutant V181A, which, as expected, disrupts the Hsp21 dodecamer and decreases chaperone activity. Finally, our data emphasize that sHsp chaperone efficiency depends on oligomerization and that client interactions can occur both with and without oligomer dissociation. These results provide a generalizable workflow to explore sHsps, expand our understanding of sHsp structural motifs, and provide a testable Hsp21 structure model to inform future investigations
    corecore