5,358 research outputs found

    Early Surgery for Traumatic Spinal Cord Injury: Where Are We Now?

    Get PDF
    Study Design: Narrative review. Objective: There is a strong biological rationale to perform early decompression after traumatic spinal cord injury (SCI). With an enlarging clinical evidence base, most spine surgeons internationally now favor early decompression for the majority of SCI patients; however, a number of pertinent questions remain surrounding this therapy. Methods: A narrative review evaluating the status of early surgery for SCI. In particular, we addressed the following questions: (1) Which patients stand to benefit most from early surgery? 2) What is the most appropriate time threshold defining early surgery? Results: Although heterogeneity exists, the evidence generally seems to support early surgery. While the best evidence exists for cervical SCI, there is insufficient data to support a differential effect for early surgery depending on neurological level or injury severity. When comparing thresholds to define early versus late surgery-including a later threshold (48-72 hours), an earlier threshold (24 hours), and an ultra-early threshold (8-12 hours)-the 2 earlier time points seem to be associated with the greatest potential for improved outcomes. However, existing prehospital and hospital logistics pose barriers to early surgery in a significant proportion of patients. An overview of recommendations from the recent AOSpine guidelines is provided. Conclusion: In spite of increasing acceptance of early surgery post SCI, further research is needed to (1) identify subgroups of patients who stand to derive particular benefit-in particular to develop more evidence-based approaches for central cord syndrome and (2) investigate the efficacy and feasibility of ultra-early surgery targeting more aggressive timelines

    Human-specific CpG 'beacons' identify human-specific prefrontal cortex H3K4me3 chromatin peaks

    Get PDF
    Therefore, CpG-focused comparative sequence analysis can precisely pinpoint chromatin structures that contribute to the human-specific phenotype and further supports an integrated approach in genomic and epigenomic studie

    Probing an Ancient Protein's Dynamics with NMR

    Get PDF

    Recombination in bdelloid rotifer genomes: asexuality, transfer and stress

    Get PDF
    Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes

    Dynamically-coupled partial-waves in ρπ\rho\pi isospin-2 scattering from lattice QCD

    Full text link
    We present the first determination of ρπ\rho \pi scattering, incorporating dynamically-coupled partial-waves, using lattice QCD, a first-principles numerical approach to QCD. Considering the case of isospin-2 ρπ\rho \pi, we calculate partial-wave amplitudes with J3J \le 3 and determine the degree of dynamical mixing between the coupled SS and DD-wave channels with JP=1+J^P=1^+. The analysis makes use of the relationship between scattering amplitudes and the discrete spectrum of states in the finite volume lattice. Constraints on the scattering amplitudes are provided by over one hundred energy levels computed on two lattice volumes at various overall momenta and in several irreducible representations of the relevant symmetry groups. The spectra follow from variational analyses of matrices of correlations functions computed with large bases of meson-meson operators. Calculations are performed with degenerate light and strange quarks tuned to the physical strange quark mass so that mπ700m_\pi \sim 700 MeV, ensuring that the ρ\rho is stable against strong decay. This work demonstrates the successful application of techniques, opening the door to calculations of scattering processes that incorporate the effects of dynamically-coupled partial-waves, including those involving resonances or bound states.Comment: Minor changes to match the published versio

    The πππγ\pi\pi\to\pi\gamma^\star amplitude and the resonant ρπγ\rho\to\pi\gamma^\star transition from lattice QCD

    Get PDF
    We present a determination of the PP-wave πππγ\pi\pi\to\pi\gamma^\star transition amplitude from lattice quantum chromodynamics. Matrix elements of the vector current in a finite-volume are extracted from three-point correlation functions, and from these we determine the infinite-volume amplitude using a generalization of the Lellouch-L\"uscher formalism. We determine the amplitude for a range of discrete values of the ππ\pi\pi energy and virtuality of the photon, and observe the expected dynamical enhancement due to the ρ\rho resonance. Describing the energy dependence of the amplitude, we are able to analytically continue into the complex energy plane and from the residue at the ρ\rho pole extract the ρπγ\rho\to \pi \gamma^\star transition form factor. This calculation, at mπ400m_\pi\approx 400 MeV, is the first to determine the form factor of an unstable hadron within a first principles approach to QCD.Comment: 20 pages, 16 figures, 3 table

    A Calibrated Method of Massage Therapy Decreases Systolic Blood Pressure Concomitant With Changes in Heart Rate Variability in Male Rats.

    Get PDF
    ObjectiveThe purpose of this study was to develop a method for applying calibrated manual massage pressures by using commonly available, inexpensive sphygmomanometer parts and validate the use of this approach as a quantitative method of applying massage therapy to rodents.MethodsMassage pressures were monitored by using a modified neonatal blood pressure (BP) cuff attached to an aneroid gauge. Lightly anesthetized rats were stroked on the ventral abdomen for 5 minutes at pressures of 20 mm Hg and 40 mm Hg. Blood pressure was monitored noninvasively for 20 minutes following massage therapy at 5-minute intervals. Interexaminer reliability was assessed by applying 20 mm Hg and 40 mm Hg pressures to a digital scale in the presence or absence of the pressure gauge.ResultsWith the use of this method, we observed good interexaminer reliability, with intraclass coefficients of 0.989 versus 0.624 in blinded controls. In Long-Evans rats, systolic BP dropped by an average of 9.86% ± 0.27% following application of 40 mm Hg massage pressure. Similar effects were seen following 20 mm Hg pressure (6.52% ± 1.7%), although latency to effect was greater than at 40 mm Hg. Sprague-Dawley rats behaved similarly to Long-Evans rats. Low-frequency/high-frequency ratio, a widely-used index of autonomic tone in cardiovascular regulation, showed a significant increase within 5 minutes after 40 mm Hg massage pressure was applied.ConclusionsThe calibrated massage method was shown to be a reproducible method for applying massage pressures in rodents and lowering BP

    Solid-Solid Interfacial Contact of Tubing Walls Drives Therapeutic Protein Aggregation During Peristaltic Pumping

    Get PDF
    Peristaltic pumping during bioprocessing can cause therapeutic protein loss and aggregation during use. Due to the complexity of this apparatus, root-cause mechanisms behind protein loss have been long sought. We have developed new methodologies isolating various peristaltic pump mechanisms to determine their effect on monomer loss. Closed-loops of peristaltic tubing were used to investigate the effects of peristaltic pump parameters on temperature and monomer loss, whilst two mechanism isolation methodologies are used to isolate occlusion and lateral expansion-relaxation of peristaltic tubing. Heat generated during peristaltic pumping can cause heat-induced monomer loss and the extent of heat gain is dependent on pump speed and tubing type. Peristaltic pump speed was inversely related to the rate of monomer loss whereby reducing speed 2.0-fold increased loss rates by 2.0- to 5.0-fold. Occlusion is a parameter that describes the amount of tubing compression during pumping. Varying this to start the contacting of inner tubing walls is a threshold that caused an immediate 20-30% additional monomer loss and turbidity increase. During occlusion, expansion-relaxation of solid-liquid interfaces and solid-solid interface contact of tubing walls can occur simultaneously. Using two mechanisms isolation methods, the latter mechanism was found to be most destructive and a function of solid-solid contact area, where increasing the contact area 2.0-fold increased monomer loss by 1.6-fold. We establish that a form of solid-solid contact mechanism whereby the contact solid interfaces disrupt adsorbed protein films is the root-cause behind monomer loss and protein aggregation during peristaltic pumping
    corecore