1,837 research outputs found

    Style and Substance in Lawyers

    Get PDF

    TDCOSMO XIV: Practical Techniques for Estimating External Convergence of Strong Gravitational Lens Systems and Applications to the SDSS J0924+0219 System

    Full text link
    Time-delay cosmography uses strong gravitational lensing of a time-variable source to infer the Hubble Constant. The measurement is independent from both traditional distance ladder and CMB measurements. An accurate measurement with this technique requires considering the effects of objects along the line of sight outside the primary lens, which is quantified by the external convergence (Îșext\kappa_{\rm{ext}}). In absence of such corrections, H0H_0 will be biased towards higher values in overdense fields and lower values in underdense fields. We discuss the current state of the methods used to account for environment effects. We present a new software package built for this kind of analysis and others that can leverage large astronomical survey datasets. We apply these techniques to the SDSS J0924+0219 strong lens field. We infer the relative density of the SDSS J0924+0219 field by computing weighted number counts for all galaxies in the field, and comparing to weighted number counts computed for a large number of fields in a reference survey. We then compute weighted number counts in the Millennium Simulation and compare these results to infer the external convergence of the lens field.Results. Our results show the SDSS J0924+0219 field is a fairly typical line of sight, with median Îșext=−0.012\kappa_{\rm{ext}} = -0.012 and standard deviation σÎș=0.028\sigma_{\kappa} = 0.028.Comment: Submitted to A&A. 10 pages, 5 figure

    Analysis of methods

    Get PDF
    Information is one of an organization's most important assets. For this reason the development and maintenance of an integrated information system environment is one of the most important functions within a large organization. The Integrated Information Systems Evolution Environment (IISEE) project has as one of its primary goals a computerized solution to the difficulties involved in the development of integrated information systems. To develop such an environment a thorough understanding of the enterprise's information needs and requirements is of paramount importance. This document is the current release of the research performed by the Integrated Development Support Environment (IDSE) Research Team in support of the IISEE project. Research indicates that an integral part of any information system environment would be multiple modeling methods to support the management of the organization's information. Automated tool support for these methods is necessary to facilitate their use in an integrated environment. An integrated environment makes it necessary to maintain an integrated database which contains the different kinds of models developed under the various methodologies. In addition, to speed the process of development of models, a procedure or technique is needed to allow automatic translation from one methodology's representation to another while maintaining the integrity of both. The purpose for the analysis of the modeling methods included in this document is to examine these methods with the goal being to include them in an integrated development support environment. To accomplish this and to develop a method for allowing intra-methodology and inter-methodology model element reuse, a thorough understanding of multiple modeling methodologies is necessary. Currently the IDSE Research Team is investigating the family of Integrated Computer Aided Manufacturing (ICAM) DEFinition (IDEF) languages IDEF(0), IDEF(1), and IDEF(1x), as well as ENALIM, Entity Relationship, Data Flow Diagrams, and Structure Charts, for inclusion in an integrated development support environment

    Are Ethnic and Gender Specific Equations Needed to Derive Fat Free Mass from Bioelectrical Impedance in Children of South Asian, Black African-Caribbean and White European Origin? Results of the Assessment of Body Composition in Children Study

    Get PDF
    Background Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Methods Cross-sectional study of children aged 8–10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height2/Z); C: FFM = linear combination(height2/Z+weight)}. Results Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Conclusions Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences

    Shank3 mutant mice display autistic-like behaviours and striatal dysfunction

    Get PDF
    Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan–McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice.National Institute of Mental Health (U.S.) (NIMH/NIH (R01MH081201))Hartwell Foundation (Hartwell Individual Biomedical Research Award)Simons Foundation (Autism Research Initiative (SFARI) grant Award)Brain and Behavior Research Foundation (NARSAD Young Investigator Award)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award (F32MH084460))National Institutes of Health (U.S.) (NIH grant (R03MH085224))Fundação para a Ciência e a Tecnologia (SFRH/BD/15231/2004)Fundação para a Ciência e a Tecnologia (SFRH/BD/15855/2005)Instituto Gulbenkian de Ciência (“Programa Gulbenkian de Doutoramento em Biomedicina” (PGDB, Oeiras, Portugal))University of Coimbra. Center for Neuroscience and Cell Biology (“Programa Doutoral em Biologia Experimental e Biomedicina” (CNC, Coimbra, Portugal)
    • 

    corecore