43,503 research outputs found

    Ohm's Law at strong coupling: S duality and the cyclotron resonance

    Full text link
    We calculate the electrical and thermal conductivities and the thermoelectric coefficient of a class of strongly interacting 2+1 dimensional conformal field theories with anti-de Sitter space duals. We obtain these transport coefficients as a function of charge density, background magnetic field, temperature and frequency. We show that the thermal conductivity and thermoelectric coefficient are determined by the electrical conductivity alone. At small frequency, in the hydrodynamic limit, we are able to provide a number of analytic formulae for the electrical conductivity. A dominant feature of the conductivity is the presence of a cyclotron pole. We show how bulk electromagnetic duality acts on the transport coefficients.Comment: 23 pages, 11 figures, typos corrected and references added. Improved discussion of S dualit

    Planning for Decentralized Control of Multiple Robots Under Uncertainty

    Full text link
    We describe a probabilistic framework for synthesizing control policies for general multi-robot systems, given environment and sensor models and a cost function. Decentralized, partially observable Markov decision processes (Dec-POMDPs) are a general model of decision processes where a team of agents must cooperate to optimize some objective (specified by a shared reward or cost function) in the presence of uncertainty, but where communication limitations mean that the agents cannot share their state, so execution must proceed in a decentralized fashion. While Dec-POMDPs are typically intractable to solve for real-world problems, recent research on the use of macro-actions in Dec-POMDPs has significantly increased the size of problem that can be practically solved as a Dec-POMDP. We describe this general model, and show how, in contrast to most existing methods that are specialized to a particular problem class, it can synthesize control policies that use whatever opportunities for coordination are present in the problem, while balancing off uncertainty in outcomes, sensor information, and information about other agents. We use three variations on a warehouse task to show that a single planner of this type can generate cooperative behavior using task allocation, direct communication, and signaling, as appropriate

    Hyperfine Splitting and the Zeeman Effect in Holographic Heavy-Light Mesons

    Full text link
    We inspect the mass spectrum of heavy-light mesons in deformed N=2 super Yang-Mills theory using the AdS/CFT correspondence. We demonstrate how some of the degeneracies of the supersymmetric meson spectrum can be removed upon breaking the supersymmetry, thus leading to the emergence of hyperfine structure. The explicit SUSY breaking scenarios we consider involve on one hand tilting one of the two fundamental D7 branes inside the internal R^6 space, and on the other hand applying an external magnetic field on the (untilted) branes. The latter scenario leads to the well-known Zeeman effect, which we inspect for both weak and strong magnetic fields.Comment: 5 pages, 1 figur

    Theory of the electronic structure of dilute bismide and bismide-nitride alloys of GaAs: Tight-binding and k.p models

    Full text link
    The addition of dilute concentrations of bismuth (Bi) into GaAs to form GaBiAs alloys results in a large reduction of the band gap energy Eg accompanied by a significant increase of the spin-orbit-splitting energy (delta_SO), leading to an Eg < delta_SO regime for ~10% Bi composition which is technologically relevant for the design of highly efficient photonic devices. The quaternary alloy GaBiNAs offers further flexibility for band gap tuning, because both nitrogen and bismuth can independently induce band gap reduction. This work reports sp3s* tight binding and 14-band k.p models for the study of the electronic structure of GaBiAs and GaBiNAs alloys. Our results are in good agreement with the available experimental data.Comment: 2 pages, 1 figur

    A Model for Scattering with Proliferating Resonances: Many Coupled Square Wells

    Get PDF
    We present a multichannel model for elastic interactions, comprised of an arbitrary number of coupled finite square-well potentials, and derive semi-analytic solutions for its scattering behavior. Despite the model's simplicity, it is flexible enough to include many coupled short-ranged resonances in the vicinity of the collision threshold, as is necessary to describe ongoing experiments in ultracold molecules and lanthanide atoms. We also introduce a simple, but physically realistic, statistical ensemble for parameters in this model. We compute the resulting probability distributions of nearest-neighbor resonance spacings and analyze them by fitting to the Brody distribution. We quantify the ability of alternative distribution functions, for resonance spacing and resonance number variance, to describe the crossover regime. The analysis demonstrates that the multichannel square-well model with the chosen ensemble of parameters naturally captures the crossover from integrable to chaotic scattering as a function of closed channel coupling strength.Comment: 11 pages, 8 figure

    Effects of Diffusion on Photocurrent Generation in Single-Walled Carbon Nanotube Films

    Full text link
    We have studied photocurrent generation in large carbon nanotube (CNT) films using electrodes with different spacings. We observe that the photocurrent depends strongly on the position of illumination, with maximum observed response occurring upon illumination at the electrode edges. The rate of change of the response decays exponentially, with the fastest response occurring for samples with the smallest electrode spacing. We show that the time response is due to charge carrier diffusion in low-mobility CNT films
    corecore