106 research outputs found

    Effect of multiple allelic drop-outs in forensic RMNE calculations

    Get PDF
    Technological advances such as massively parallel sequencing enable increasing amounts of genetic information to be obtained from increasingly challenging samples. Certainly on low template, degraded and multi-contributor samples, drop-outs will increase in number for many profiles simply by analyzing more loci, making it difficult to probabilistically assess how many drop-outs have occurred and at which loci they might have occurred. Previously we developed a Random Man Not Excluded (RMNE) method that can take into account allelic drop-out while avoiding detailed estimations of the probability that drop-outs have occurred, nor making assumptions about at which loci these drop-outs might have occurred. The number of alleles that have dropped out, does not need to be exactly known. Here we report a generic Python algorithm to calculate the RMNE probabilities for any given number of loci. The number of allowed drop-outs can be set between 0 and twice the number of analyzed loci. The source code has been made available on https://github.com/fvnieuwe/rmne. An online web-based RMNE calculation tool has been made available on http://forensic.ugent.be/rmne. The tool can calculate these RMNE probabilities from a custom list of probabilities of the observed and non-observed alleles from any given number of loci. Using this tool, we explored the effect of allowing allelic drop-outs on the evidential value of random forensic profiles with a varying number of loci. Our results give insight into how the number of allowed drop-outs affects the evidential value of a profile and how drop-out can be managed in the RMNE approach

    My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing

    Get PDF
    Forensic scientists are currently investigating how to transition from capillary electrophoresis (CE) to massive parallel sequencing (MPS) for analysis of forensic DNA profiles. MPS offers several advantages over CE such as virtually unlimited multiplexy of loci, combining both short tandem repeat (STR) and single nucleotide polymorphism (SNP) loci, small amplicons without constraints of size separation, more discrimination power, deep mixture resolution and sample multiplexing. We present our bioinformatic framework My-Forensic-Loci-queries (MyFLq) for analysis of MPS forensic data. For allele calling, the framework uses a MySQL reference allele database with automatically determined regions of interest (ROIs) by a generic maximal flanking algorithm which makes it possible to use any STR or SNP forensic locus. Python scripts were designed to automatically make allele calls starting from raw MPS data. We also present a method to assess the usefulness and overall performance of a forensic locus with respect to MPS, as well as methods to estimate whether an unknown allele, which sequence is not present in the MySQL database, is in fact a new allele or a sequencing error. The MyFLq framework was applied to an Illumina MiSeq dataset of a forensic Illumina amplicon library, generated from multilocus STR polymerase chain reaction (PCR) on both single contributor samples and multiple person DNA mixtures. Although the multilocus PCR was not yet optimized for MPS in terms of amplicon length or locus selection, the results show excellent results for most loci. The results show a high signal-to-noise ratio, correct allele calls, and a low limit of detection for minor DNA contributors in mixed DNA samples. Technically, forensic MPS affords great promise for routine implementation in forensic genomics. The method is also applicable to adjacent disciplines such as mitochondrial DNA research

    Porting forensic DNA analysis to deep sequencing

    Get PDF
    Forensic DNA profiles of short tandem repeat (STR) loci are currently obtained using PCR followed by capillary electrophoresis (CE). Massively parallel sequencing (MPS) technologies do not rely on size separation and thus relieve the limitations on locus multiplexy. Deep sequencing with MPS creates possibilities within forensics for analyzing degraded samples and mixed samples. Furthermore, in the same analysis single nucleotide polymorphism (SNP) markers can be included, which can generate phenotypic or ancestry leads for forensic investigators. Data analysis of raw sequencer reads, resulting in a reliable and usable forensic human identification report is still in early development. The aim of the doctoral research was to develop a program for forensic DNA data analysis. The main results are the data analysis framework MyFLq (My Forensic Loci queries) and nomenclature service FLAD (Forensic Loci Allele Database). MyFLq and FLAD can be used together in a forensic workflow that has backward compatibility with CE. To my knowledge, this is the first open-source and complete solution for forensic MPS raw data analysis

    TRAPID : an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes

    Get PDF
    Transcriptome analysis through next-generation sequencing technologies allows the generation of detailed gene catalogs for non-model species, at the cost of new challenges with regards to computational requirements and bioinformatics expertise. Here, we present TRAPID, an online tool for the fast and efficient processing of assembled RNA-Seq transcriptome data, developed to mitigate these challenges. TRAPID offers high-throughput open reading frame detection, frameshift correction and includes a functional, comparative and phylogenetic toolbox, making use of 175 reference proteomes. Benchmarking and comparison against state-of-the-art transcript analysis tools reveals the efficiency and unique features of the TRAPID system

    Reference loci for RT-qPCR analysis of differentiating human embryonic stem cells

    Get PDF
    Background: Selecting stably expressed reference genes is essential for proper reverse transcription quantitative polymerase chain reaction gene expression analysis. However, this choice is not always straightforward. In the case of differentiating human embryonic stem (hES) cells, differentiation itself introduces changes whereby reference gene stability may be influenced. Results: In this study, we evaluated the stability of various references during retinoic acid-induced (2 microM) differentiation of hES cells. Out of 12 candidate references, beta-2-microglobulin, ribosomal protein L13A and Alu repeats are found to be the most stable for this experimental set-up. Conclusions: Our results show that some of the commonly used reference genes are actually not amongst the most stable loci during hES cell differentiation promoted by retinoic acid. Moreover, a novel normalization strategy based on expressed Alu repeats is validated for use in hES cell experiments

    Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua

    Get PDF
    Background: The medicinal plant Artemisia annua is covered with filamentous trichomes and glandular, artemisinin producing trichomes. A high artemisinin supply is needed at a reduced cost for treating malaria. Artemisinin production in bioreactors can be facilitated if a better insight is obtained in the biosynthesis of artemisinin and other metabolites. Therefore, metabolic activities of glandular and filamentous trichomes were investigated at the transcriptome level. Results: By laser pressure catapulting, glandular and filamentous trichomes as well as apical and sub-apical cells from glandular trichomes were collected and their transcriptome was sequenced using Illumina RNA-Seq. A de novo transcriptome was assembled (Trinity) and studied with a differential expression analysis (edgeR). A comparison of the transcriptome from glandular and filamentous trichomes shows that MEP, MVA, most terpene and lipid biosynthesis pathways are significantly upregulated in glandular trichomes. Conversely, some transcripts coding for specific sesquiterpenoid and triterpenoid enzymes such as 8-epi-cedrol synthase and an uncharacterized oxidosqualene cyclase were significantly upregulated in filamentous trichomes. All known artemisinin biosynthesis genes are upregulated in glandular trichomes and were detected in both the apical and sub-apical cells of the glandular trichomes. No significant differential expression could be observed between the apical and sub-apical cells. Conclusions: Our results underscore the vast metabolic capacities of A. annua glandular trichomes but nonetheless point to the existence of specific terpene metabolic pathways in the filamentous trichomes. Candidate genes that might be involved in artemisinin biosynthesis are proposed based on their putative function and their differential expression level

    Forensic massively parallel sequencing data analysis tool: implementation of MyFLq as a standalone web- and Illumina BaseSpace®-application

    Get PDF
    Routine use of massively parallel sequencing (MPS) for forensic genomics is on the horizon. The last few years, several algorithms and workflows have been developed to analyze forensic MPS data. However, none have yet been tailored to the needs of the forensic analyst who does not possess an extensive bioinformatics background. We developed our previously published forensic MPS data analysis framework MyFLq (My-Forensic-Loci-queries) into an open-source, user-friendly, web-based application. It can be installed as a standalone web application, or run directly from the Illumina BaseSpace environment. In the former, laboratories can keep their data on-site, while in the latter, data from forensic samples that are sequenced on an Illumina sequencer can be uploaded to Basespace during acquisition, and can subsequently be analyzed using the published MyFLq BaseSpace application. Additional features were implemented such as an interactive graphical report of the results, an interactive threshold selection bar, and an allele length-based analysis in addition to the sequenced-based analysis. Practical use of the application is demonstrated through the analysis of four 16-plex short tandem repeat (STR) samples, showing the complementarity between the sequence- and length-based analysis of the same MPS data

    Redox control of vascular biology

    Get PDF
    Redox control is lost when the antioxidant defense system cannot remove abnormally high concentrations of signaling molecules, such as reactive oxygen species (ROS). Chronically elevated levels of ROS cause oxidative stress that may eventually lead to cancer and cardiovascular and neurodegenerative diseases. In this review, we focus on redox effects in the vascular system. We pay close attention to the subcompartments of the vascular system (endothelium, smooth muscle cell layer) and give an overview of how redox changes influence those different compartments. We also review the core aspects of redox biology, cardiovascular physiology, and pathophysiology. Moreover, the topic-specific knowledgebase DES-RedoxVasc was used to develop two case studies, one focused on endothelial cells and the other on the vascular smooth muscle cells, as a starting point to possibly extend our knowledge of redox control in vascular biology. © 2019 The Authors. BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology

    In silico discovery of a FOXM1 driven embryonal signaling pathway in therapy resistant neuroblastoma tumors

    Get PDF
    Chemotherapy resistance is responsible for high mortality rates in neuroblastoma. MYCN, an oncogenic driver in neuroblastoma, controls pluripotency genes including LIN28B. We hypothesized that enhanced embryonic stem cell (ESC) gene regulatory programs could mark tumors with high pluripotency capacity and subsequently increased risk for therapy failure. An ESC miRNA signature was established based on publicly available data. In addition, an ESC mRNA signature was generated including the 500 protein coding genes with the highest positive expression correlation with the ESC miRNA signature score in 200 neuroblastomas. High ESC m(i)RNA expression signature scores were significantly correlated with poor neuroblastoma patient outcome specifically in the subgroup of MYCN amplified tumors and stage 4 nonamplified tumors. Further data-mining identified FOXM1, as the major predicted driver of this ESC signature, controlling a large set of genes implicated in cell cycle control and DNA damage response. Of further interest, re-analysis of published data showed that MYCN transcriptionally activates FOXM1 in neuroblastoma cells. In conclusion, a novel ESC m(i)RNA signature stratifies neuroblastomas with poor prognosis, enabling the identification of therapy-resistant tumors. The finding that this signature is strongly FOXM1 driven, warrants for drug design targeted at FOXM1 or key components controlling this pathway

    Literature-Based Enrichment Insights into Redox Control of Vascular Biology

    Get PDF
    In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic
    • …
    corecore