126 research outputs found

    Stability of giant vortices in quantum liquids

    Full text link
    We show how giant vortices can be stabilized in strong external potential Bose-Einstein condensates. We illustrate the formation of these vortices thanks to the relaxation Ginzburg-Landau dynamics for two typical potentials in two spatial dimensions. The giant vortex stability is studied for the particular case of the rotating cylindrical hard wall. The minimization of the perturbed energy is simplified into a one dimensional relaxation dynamics. The giant vortices can be stabilized only in a finite frequency range. Finally we obtain a curve for the minimum frequency needed to observe a giant vortex for a given nonlinearity

    Curvature singularity and film-skating during drop impact

    Full text link
    We study the influence of the surrounding gas in the dynamics of drop impact on a smooth surface. We use an axisymmetric 3D model for which both the gas and the liquid are incompressible; lubrication regime applies for the gas film dynamics and the liquid viscosity is neglected. In the absence of surface tension a finite time singularity whose properties are analysed is formed and the liquid touches the solid on a circle. When surface tension is taken into account, a thin jet emerges from the zone of impact, skating above a thin gas layer. The thickness of the air film underneath this jet is always smaller than the mean free path in the gas suggesting that the liquid film eventually wets the surface. We finally suggest an aerodynamical instability mechanism for the splash.Comment: 5 figure

    Wrinkles, folds and plasticity in granular rafts

    Get PDF
    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated to floating elastic sheets and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing the first quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.Comment: 10 pages, including Supplementary Information. Submitted to Physical Review Material
    corecore