472 research outputs found

    Propriétés électriques et optiques de couches minces de WS2 et MoS2 en vue d'applications photovoltaïques

    Get PDF
    Single crystals of layered semiconductors such as WS2 and MoS2 have already proven their efficiency as active elements in photovoltaic cells. Due to their high optical absorption coefficient in the visible range, these materials could be used in the form of thin films in photovoltaic devices. In this work, we explore the potential of the sputtering technique to prepare semiconducting films of WS2 and MoS2. The influence of thermal treatments on the films is also examined. The study focuses on the electrical and optical properties of the films. They are determined by conventional conductivity, Hall effect, photoconductivity and reflection-transmission measurements. With the help of scanning probe microscopes like the scanning tunneling microscope (STM) or the atomic force microscope (AFM), the local electrical and photovoltaic properties are measured down to the nanometer scale and the relationships with the properties measured over macroscopic distances are established. Reactive sputtering (with H2S reactive gas) from a WS2 or a MoS2 target yields polycristalline WSx (0.7 1025 m-3) indicate an important level of doping and the Hall mobilities (”H < 0.1 × 10-4 m2V-1s-1) are smaller than those measured in single crystals against (”H ≈ 200 × 10-4 m2V-1s-1). STM current-voltage (I-V) spectroscopy on the sputtered film surface is typical of a degenerate semiconductor or of a high density of surface states. The films are therefore not suitable for the preparation of junctions. In order to improve the semiconducting properties of the film, a new preparation method is developed. The fabrication process, which can easily be scaled up, produces WS2 and MoS2 films with electronic properties close to those of single crystals. Firstly, an amorphous WS3-4 film is sputter-deposited at low temperature (0°C) on a substrate coated with a thin (10 nm) layer of nickel or cobalt. Secondly, the film is annealed for one hour under an argon flow between 750°C and 950°C. By predepositing Ni or Co the cristallinity, the grain size and the texture of the films are spectacularly improved. Elements such as Ni or Co are hereafter named crystallization promoter. After annealing, they remain in film in the form of NiSx or CoSx droplets. Films obtained by this sputtering/annealing process show large (1–5”m) and thick (50–200 nm) grains with their c axis oriented perpendicular to the substrate. Optical reflection and transmission coefficients are similar to those measured on WS2 single crystals, with excitonic absorption peaks of same intensity at 1.94 and 2.36 eV. The films are photoconductive when illuminated with photons whose energy is superior to 1.35 eV, which corresponds to the indirect bandgap of WS2. The conductivity is of p type with a carrier concentration of about 1023 m-3 and a Hall mobility of 5–10 × 10-4 m2V-1s-1at RT. The Hall mobility is thermally activated with an activation energy of 60–90 meV between 200 et 320K. The transport properties (mobility, photoconductivity) are mainly controlled by the potential barriers at grain boundaries. STM I-V spectroscopy with and without illumination shows that the flat (002) surfaces of the WS2 cristallites in the films have a low density of surface states, similarly to the single crystal (002) surfaces. Measurements using an AFM mounted with a conductive tip indicate that the NiSx phases in the film are metallic while the WS2 grain edges are typical of a degenerate semiconductor. In order to characterize more quantitatively the local electronic properties of the films an innovative characterization technique is introduced. A lattice of triangular gold electrodes, each electrode having a typical area of 0.2 ”m2, is evaporated on the p-type WS2 film. With the help of an AFM, the current-voltage characteristics of the contacts between the gold electrodes and the WS2 film are measured. The electrodes deposited on flat WS2 crystallites form rectifying diodes with the underlying grains. Barrier heights of 0.56–0.74 eV and diode ideality factors between 1.15 and 2 are determined. Under illumination, open-circuit voltages of up to 500 mV can be measured on some contacts. The photodiodes collect all carriers photo-excited on a surface of about 20 ”m2, i.e. the typical size of the WS2 cristallites. The various experiments performed on the micro-contacts clarify the respective roles of the cristallites and the grain boundaries in the macroscopic measurements (photoconductivity, Hall effect, diodes). The use of crystallization promoters during the annealing of WS3-4 films therefore proves fruitful for the preparation of semiconducting films. The WS2 crystallites inside these films are suitable for the preparation of solid-state photodiodes, what is a first step towards the realization of photovoltaic devices based on WS2 or MoS2 thin films

    Amorphous silicon-based microchannel plate detectors with high multiplication gain

    Full text link
    With their fast response time and a spatial resolution in the range of a few microns, microchannel plates (MCPs) are a prominent choice for the development of detectors with highest resolution standards. Amorphous silicon-based microchannel plates (AMCPs) aim at overcoming the fabrication drawbacks of conventional MCPs and the long dead time of their individual channels. AMCPs are fabricated via plasma deposition and dry reactive ion etching. Using a state-of-the-art dry reactive ion etching process, the aspect ratio, so far limited to a value of 14, could be considerably enhanced with a potential for very high gain values. We show first fabricated AMCP devices and provide an outlook for gain values to be expected based on the fabrication results.Comment: Preprin

    Light trapping in solar cells at the extreme coupling limit

    Get PDF
    We calculate the maximal absorption enhancement obtainable by guided mode excitation in a weakly absorbing dielectric slab over wide wavelength ranges. The slab mimics thin film silicon solar cells in the low absorption regime. We consider simultaneously wavelength-scale periodicity of the texture, small thickness of the film, modal properties of the guided waves and their confinement to the film. Also we investigate the effect of the incident angle on the absorption enhancement. Our calculations provide tighter bounds for the absorption enhancement but still significant improvement is possible. Our explanation of the absorption enhancement can help better exploitation of the guided modes in thin film devices.Comment: accepted for publication in JOSA

    Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths

    Get PDF
    To date, none of the predictions that have been made about the emerging BIPV industry have really hit the target. The anticipated boom has so far stalled and despite developing and promoting a number of excellent systems and products, many producers around the world have been forced to quit on purely economic grounds. The authors believe that after this painful cleansing of the market, a massive counter trend will follow, enlivened and carried forward by more advanced PV technologies and ever-stricter climate policies designed to achieve energy neutrality in a cost-effective way. As a result, the need for BIPV products for use in construction will undergo first a gradual and then a massive increase. The planning of buildings with multifunctional, integrated roof and façade elements capable of fulfilling the technical and legal demands will become an essential, accepted part of the architectonic mainstream and will also contribute to an aesthetic valorisation. Until then, various barriers need to be overcome in order to facilitate and accelerate BIPV. Besides issues related to mere cost-efficiency ratio, psychological and social factors also play an evident role. The goal of energy change linked to greater use of renewables can be successfully achieved only when all aspects are taken into account and when visual appeal and energy efficiency thus no longer appear to be an oxymoro

    Analysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP

    Get PDF
    Nanoindentation and nanoscratching of an indium phosphide (InP) semiconductor surface was investigated via contact mechanics. Plastic deformation in InP is known to be caused by the nucleation, propagation, and multiplication of dislocations. Using selective electrochemical dissolution, which reveals dislocations at the semiconductor surface, the load needed to create the first dislocations in indentation and scratching can be determined. The experimental results showed that the load threshold to generate the first dislocations is twice lower in scratching compared to indentation. By modeling the elastic stress fields using contact mechanics based on Hertz's theory, the results during scratching can be related to the friction between the surface and the tip. Moreover, Hertz's model suggests that dislocations nucleate firstly at the surface and then propagate inside the bulk. The dislocation nucleation process explains the pop-in event which is characterized by a sudden extension of the indenter inside the surface during loadin

    Review of amorphous silicon based particle detectors: the quest for single particle detection

    Get PDF
    Hydrogenated amorphous silicon (a-Si:H) is attractive for radiation detectors because of its radiation resistance and processability over large areas with mature Si microfabrication techniques. While the use of a-Si:H for medical imaging has been very successful, the development of detectors for particle tracking and minimum-ionizing-particle detection has lagged, with almost no practical implementation. This paper reviews the development of various types of a-Si:H-based detectors and discusses their respective achievements and limitations. It also presents more recent developments of detectors that could potentially achieve single particle detection and be integrated in a monolithic fashion into a variety of applications

    Thin-film limit formalism applied to surface defect absorption

    Get PDF
    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e. g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking. (C)2014 Optical Society of Americ

    Angular behavior of the absorption limit in thin film silicon solar cells

    Get PDF
    We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic polarization can provide higher values of absorption enhancement. We also propose a way to reduce the angular dependence of the solar cell efficiency by the appropriate choice of periodic pattern. Finally, to get more practical values for the absorption enhancement, we consider the effect of parasitic loss which can significantly reduce the enhancement factor
    • 

    corecore