89 research outputs found

    Fast quantitative determination of microbial rhamnolipids from cultivation broths by ATR-FTIR Spectroscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vibrational spectroscopic techniques are becoming increasingly important and popular because they have the potential to provide rapid and convenient solutions to routine analytical problems. Using these techniques, a variety of substances can be characterized, identified and also quantified rapidly.</p> <p>Results</p> <p>The rapid ATR-FTIR (Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy) <it>in time </it>technique has been applied, which is suitable to quantify the concentrations of microbial rhamnolipids in a typical cultivation process. While the usually applied HPLC analysis requires an extensive and time consuming multi step extraction protocol for sample preparation, the ATR-FTIR-method allows the quantification of the rhamnolipids within 20 minutes. Accuracies between 0.5 g/l – 2.1 g/l for the different analytes were determined by cross validation of the calibration set. Even better accuracies between 0.28 g/l – 0.59 g/l were found for independent test samples of an arbitrarily selected cultivation.</p> <p>Conclusion</p> <p>ATR-FTIR was found to be suitable for the rapid analysis of rhamnolipids in a biotechnological process with good reproducibility in sample determination and sufficient accuracy. An improvement in accuracy through continuous expansion and validation of the reference spectra set seems very likely.</p

    Enzymatic synthesis of glucose monodecanoate in a hydrophobic deep eutectic solvent

    Get PDF
    Environmentally friendly and biodegradable reaction media are an important part of a sustainable glycolipid production in the transition to green chemistry. Deep eutectic solvents (DESs) are an ecofriendly alternative to organic solvents. So far, only hydrophilic DESs were considered for enzymatic glycolipid synthesis. In this study, a hydrophobic DES consisting of (-)-menthol and decanoic acid is presented for the first time as an alternative to hydrophilic DES. The yields in the newly introduced hydrophobic DES are significantly higher than in hydrophilic DESs. Different reaction parameters were investigated to optimize the synthesis further. Twenty milligrams per milliliter iCalB and 0.5 M glucose resulted in the highest initial reaction velocity for the esterification reaction, while the highest initial reaction velocity was achieved with 1.5 M glucose in the transesterification reaction. The enzyme was proven to be reusable for at least five cycles without significant loss of activity

    Transaminases for the synthesis of enantiopure beta-amino acids

    Get PDF
    Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening

    Process development for the elucidation of mycotoxin formation in Alternaria alternata

    Get PDF
    The black mould Alternaria alternata produces a wide diversity of mycotoxins which are of particular health concern. Since no maximum allowable limits are set for Alternaria toxins in food and feed, prevention of Alternaria infestations and mycotoxin spoilage is the only way to avoid health risks. Thus, the understanding of mycotoxin biosynthesis is essential. For that purpose, a reliable batch process in a 2 L bioreactor was established which enables the study of several parameters influencing the production of the mycotoxins alternariol (AOH), alternariol monomethylether (AME) and tenuazonic acid (TA) by A. alternata DSM 12633. Modified Czapek-Dox medium was used with glucose as carbon source and ammonium and nitrate as nitrogen sources. Consumption of carbon and nitrogen sources as well as formation of the three mycotoxins were monitored; the average data of five independent fermentations was plotted and fitted using a logistic equation with four parameters. Maximum mycotoxin concentrations of 3.49 ± 0.12 mg/L AOH, 1.62 ± 0.14 mg/L AME and 38.28 ± 0.1 mg/L TA were obtained

    Continuous Flow Glycolipid Synthesis Using a Packed Bed Reactor

    Get PDF
    Glycolipids are a class of biodegradable biosurfactants that are non-toxic and based on renewables, making them a sustainable alternative to petrochemical surfactants. Enzymatic synthesis allows a tailor-made production of these versatile compounds using sugar and fatty acid building blocks with rationalized structures for targeted applications. Therefore, glycolipids can be comprehensively designed to outcompete conventional surfactants regarding their physicochemical properties. However, enzymatic glycolipid processes are struggling with both sugars and fatty acid solubilities in reaction media. Thus, continuous flow processes represent a powerful tool in designing efficient syntheses of sugar esters. In this study, a continuous enzymatic glycolipid production catalyzed by Novozyme 435® is presented as an unprecedented concept. A biphasic aqueous–organic system was investigated, allowing for the simultaneous solubilization of sugars and fatty acids. Owing to phase separation, the remaining non-acylated glucose was easily separated from the product stream and was refed to the reactor forming a closed-loop system. Productivity in the continuous process was higher compared to a batch one, with space–time yields of up to 1228 ± 65 µmol/L/h. A temperature of 70 °C resulted in the highest glucose-6-O-decanoate concentration in the Packed Bed Reactor (PBR). Consequently, the design of a continuous biocatalytic production is a step towards a more competitive glycolipid synthesis in the aim for industrialization

    Production strategies and applications of microbial single cell oils

    Get PDF
    Polyunsaturated fatty acids (PUFAs )of the ω-3 and ω-6 class (e.g. , α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used form any valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogensource). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. Ingeneral, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations andoverall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty acids with emphasis on food applications

    Separation of Cyclic Dipeptides (Diketopiperazines) from Their Corresponding Linear Dipeptides by RP-HPLC and Method Validation

    Get PDF
    Simple, rapid, sensitive, precise, and accurate methods for detection and separation of seven diketopiperazines (DKPs), cyclo(Gly-Gly), cyclo(dl-Ala-dl-Ala), cyclo(l-Asp-l-Phe), cyclo(l-Asp-l-Asp), cyclo(Gly-l-Phe), cyclo(l-Pro-l-Tyr), and cyclo(l-Arg-l-Arg), from their corresponding linear dipeptides and related amino acids l-Phe and l-Tyr by reversed-phase high-performance liquid chromatography (RP-HPLC) were established. Moreover, for the racemic DKP cyclo(dl-Ala-dl-Ala) and dipeptide dl-Ala-dl-Ala, separation of the diastereomers was achieved. All methods can be performed within 15 min. For all DKPs, dipeptides, and amino acids, linear ranges with correlation coefficients R2 greater than 0.998 were determined. Lowest limits of detection were found to be between 0.05 and 10 nmol per 10 μL injection, depending on the substance. For all tested substances intrarun and interrun precision ranged from 0.5 to 4.7% and 0.7 to 9.9% relative standard deviation, and accuracy was between −4.2 and 8.1% relative error. Short-term and freeze-thaw stabilities were 93% or greater for all substances. Recovery rate after heat treatment was determined to be at least 97%. These methods will be useful for quantitative determination of DKPs and their potential biodegradation products: dipeptides and amino acid

    Separation of Cyclic Dipeptides (Diketopiperazines) from Their Corresponding Linear Dipeptides by RP-HPLC and Method Validation

    Get PDF
    Simple, rapid, sensitive, precise, and accurate methods for detection and separation of seven diketopiperazines (DKPs), cyclo(Gly-Gly), cyclo(dl-Ala-dl-Ala), cyclo(l-Asp-l-Phe), cyclo(l-Asp-l-Asp), cyclo(Gly-l-Phe), cyclo(l-Pro-l-Tyr), and cyclo(l-Arg-l-Arg), from their corresponding linear dipeptides and related amino acids l-Phe and l-Tyr by reversed-phase high-performance liquid chromatography (RP-HPLC) were established. Moreover, for the racemic DKP cyclo(dl-Ala-dl-Ala) and dipeptide dl-Ala-dl-Ala, separation of the diastereomers was achieved. All methods can be performed within 15 min. For all DKPs, dipeptides, and amino acids, linear ranges with correlation coefficients R2 greater than 0.998 were determined. Lowest limits of detection were found to be between 0.05 and 10 nmol per 10 μL injection, depending on the substance. For all tested substances intrarun and interrun precision ranged from 0.5 to 4.7% and 0.7 to 9.9% relative standard deviation, and accuracy was between −4.2 and 8.1% relative error. Short-term and freeze-thaw stabilities were 93% or greater for all substances. Recovery rate after heat treatment was determined to be at least 97%. These methods will be useful for quantitative determination of DKPs and their potential biodegradation products: dipeptides and amino acid

    Enzymatical and microbial degradation of cyclic dipeptides (diketopiperazines)

    Get PDF
    Diketopiperazines (DKPs) are cyclic dipeptides, representing an abundant class of biologically active natural compounds. Despite their widespread occurrence in nature, little is known about their degradation. In this study, the enzymatical and microbial cleavage of DKPs was investigated. Peptidase catalyzed hydrolysis of certain DKPs was formerly reported, but could not be confirmed in this study. While testing additional peptidases and DKPs no degradation was detected, indicating peptidase stability of the peptide bond in cyclic dipeptides. Besides confirmation of the reported degradation of cyclo(l-Asp-l-Phe) by Paenibacillus chibensis (DSM 329) and Streptomyces flavovirens (DSM 40062), cleavage of cyclo(l-Asp-l-Asp) by DSM 329 was detected. Other DKPs were not hydrolyzed by both strains, demonstrating high substrate specificity. The degradation of cyclo(l-Asp-l-Phe) by DSM 40062 was shown to be inducible. Three strains, which are able to hydrolyze hydantoins and dihydropyrimidines, were identified for the degradation of DKPs: Leifsonia sp. K3 (DSM 27212) and Bacillus sp. A16 (DSM 25052) cleaved cyclo(dl-Ala-dl-Ala) and cyclo(l-Gly-l-Phe), and Rhizobium sp. NA04-01 (DSM 24917) degraded cyclo(l-Asp-l-Phe), cyclo(l-Gly-l-Phe) and cyclo(l-Asp-l-Asp). The first enantioselective cleavage of cyclo(dl-Ala-dl-Ala) was detected with the newly isolated strains Paenibacillus sp. 32A (DSM 27214) and Microbacterium sp. 40A (DSM 27211). Cyclo(l-Ala-d-Ala) and cyclo(l-Ala-l-Ala) were completely degraded, whereas the enantiomer cyclo(d-Ala-d-Ala) was not attacked. Altogether, five bacterial strains were newly identified for the cleavage of DKPs. These bacteria may be of value for industrial purposes, such as degradation of undesirable DKPs in food and drugs and production of (enantiopure) dipeptides and amino acids

    Foam-free Production of Surfactin via Anerobic Fermentation of Bacillus subtilis DSM 10T

    Get PDF
    Surfactin is one of the most popular biosurfactants due to its numerous potential applications. The usually aerobic production via fermentation of Bacillus subtilis is accompanied by vigorous foaming which leads to complex constructions and great expense. Therefore it is reasonable to search for alternative foam-free production processes. The current study introduces a novel approach to produce Surfactin in a foam-free process applying a strictly anaerobic bioreactor cultivation. The process was performed several times with different glucose concentrations in mineral salt medium. The fermentations were analyzed regarding specific (qSurfactin, vol. qSurfactin) and overall product yields (YP/X, YP/S) as well as substrate utilization (YX/S). Fermentations in which 2.5 g/L glucose were employed proofed to be the most effective, reaching product yields of YP/X = 0.278 g/g. Most interesting, the product yields exceeded classical aerobic fermentations, in which foam fractionation was applied. Additionally, values for specific production rate qSurfactin (0.005 g/(g∙h)) and product yield per consumed substrate (YP/S = 0.033 g/g) surpass results of comparable foam-free processes. The current study introduces an alternative to produce a biosurfactant that overcomes the challenges of severe foaming and need for additional constructions. © 2015, Willenbacher et al.; licensee Springer
    • …
    corecore