360 research outputs found
Towards automatic classification within the ChEBI ontology
*Background*
Appearing in a wide variety of contexts, biochemical 'small molecules' are a core element of biomedical data. Chemical ontologies, which provide stable identifiers and a shared vocabulary for use in referring to such biochemical small molecules, are crucial to enable the interoperation of such data. One such chemical ontology is ChEBI (Chemical Entities of Biological Interest), a candidate member ontology of the OBO Foundry. ChEBI is a publicly available, manually annotated database of chemical entities and contains around 18000 annotated entities as of the last release (May 2009). ChEBI provides stable unique identifiers for chemical entities; a controlled vocabulary in the form of recommended names (which are unique and unambiguous), common synonyms, and systematic chemical names; cross-references to other databases; and a structural and role-based classification within the ontology. ChEBI is widely used for annotation of chemicals within biological databases, text-mining, and data integration. ChEBI can be accessed online at "http://www.ebi.ac.uk/chebi/":http://www.ebi.ac.uk/chebi/ and the full dataset is available for download in various formats including SDF and OBO.

*Automated Classification*
The selection of chemical entities for inclusion in the ChEBI database is user-driven. As the use of ChEBI has grown, so too has the backlog of user-requested entries. Inevitably, the annotation backlog creates a bottleneck, and to speed up the annotation process, ChEBI has recently released a submission tool which allows community submissions of chemical entities, groups, and classes. However, classification of chemical entities within the ontology is a difficult and niche activity, and it is unlikely that the community as a whole will be able or willing to correctly and consistently classify each submitted entity, creating required classes where they are missing. As a result, it is likely that while the size of the database grows, the ontological classification will become less sophisticated, unless the classification of new entities is assisted computationally. In addition, the ChEBI database is expecting substantial size growth in the next year, so automatic classification, which has up till now not been possible, is urgently required. Automatic classification would also enable the ChEBI ontology classes to be applied to other compound databases such as PubChem. 

*Description Logic Reasoning*
Description logic based reasoning technology is a prime candidate for development of such an automatic classification system as it allows the rules of the classification system to be encoded within the knowledgebase. Already at 18000 entities, ChEBI is a fair size for a real-world application of description logic reasoning technology, and as the ontology is enhanced with a richer density of asserted relationships, the classification will become more complex and challenging. We have successfully tested a description logic-based classification of chemical entities based on specified structural properties using the hypertableaux-based HermiT reasoner, and found it to be sufficiently efficient to be feasible for use in a production environment on a database of the size that ChEBI is now. However, much work still remains to enrich the ChEBI knowledgebase itself with the properties needed to provide the formal class definitions for use in the automated classification, and to assess the efficiency of the available description logic reasoning technology on a database the size of ChEBI's forecast future growth.

*Acknowledgements*
ChEBI is funded by the European Commission under SLING, grant agreement number 226073 (Integrating Activity) within Research Infrastructures of the FP7 Capacities Specific Programme, and by the BBSRC, grant agreement number BB/G022747/1 within the “Bioinformatics and biological resources” fund
So what have data standards ever done for us? The view from metabolomics
The standardization of reporting of data promises to revolutionize biology by allowing community access to data generated in laboratories across the globe. This approach has already influenced genomics and transcriptomics. Projects that have previously been viewed as being too big to implement can now be distributed across multiple sites. There are now public databases for gene sequences, transcriptomic profiling and proteomic experiments. However, progress in the metabolomic community has seemed to falter recently, and whereas there are ontologies to describe the metadata for metabolomics there are still no central repositories for the datasets themselves. Here, we examine some of the challenges and potential benefits of further efforts towards data standardization in metabolomics and metabonomics
Notes on the Treatment of Charged Particles for Studying Cyclotide/Membrane Interactions with Dissipative Particle Dynamics
Different charge treatment approaches are examined for cyclotide-induced plasma membrane disruption by lipid extraction studied with dissipative particle dynamics. A pure Coulomb approach with truncated forces tuned to avoid individual strong ion pairing still reveals hidden statistical pairing effects that may lead to artificial membrane stabilization or distortion of cyclotide activity depending on the cyclotide’s charge state. While qualitative behavior is not affected in an apparent manner, more sensitive quantitative evaluations can be systematically biased. The findings suggest a charge smearing of point charges by an adequate charge distribution. For large mesoscopic simulation boxes, approximations for the Ewald sum to account for mirror charges due to periodic boundary conditions are of negligible influence
Recommended from our members
A decade after the metabolomics standards initiative it's time for a revision.
A recent analysis of publicly available metabolomics data shows that the MSI guidelines are not well abided to in publicly shared metabolomics studies. We propose that the MSI guidelines should be revisited and revised, as has been done in other communities, to fit the current community needs
Recommended from our members
Compliance with minimum information guidelines in public metabolomics repositories.
The Metabolomics Standards Initiative (MSI) guidelines were first published in 2007. These guidelines provided reporting standards for all stages of metabolomics analysis: experimental design, biological context, chemical analysis and data processing. Since 2012, a series of public metabolomics databases and repositories, which accept the deposition of metabolomic datasets, have arisen. In this study, the compliance of 399 public data sets, from four major metabolomics data repositories, to the biological context MSI reporting standards was evaluated. None of the reporting standards were complied with in every publicly available study, although adherence rates varied greatly, from 0 to 97%. The plant minimum reporting standards were the most complied with and the microbial and in vitro were the least. Our results indicate the need for reassessment and revision of the existing MSI reporting standards
Sherlock—A Free and Open-Source System for the Computer-Assisted Structure Elucidation of Organic Compounds from NMR Data
The structure elucidation of small organic molecules (<1500 Dalton) through 1D and 2D nuclear magnetic resonance (NMR) data analysis is a potentially challenging, combinatorial problem. This publication presents Sherlock, a free and open-source Computer-Assisted Structure Elucidation (CASE) software where the user controls the chain of elementary operations through a versatile graphical user interface, including spectral peak picking, addition of automatically or user-defined structure constraints, structure generation, ranking and display of the solutions. A set of forty-five compounds was selected in order to illustrate the new possibilities offered to organic chemists by Sherlock for improving the reliability and traceability of structure elucidation results
Dissemination of metabolomics results: role of MetaboLights and COSMOS.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.With ever-increasing amounts of metabolomics data produced each year, there is an even greater need to disseminate data and knowledge produced in a standard and reproducible way. To assist with this a general purpose, open source metabolomics repository, MetaboLights, was launched in 2012. To promote a community standard, initially culminated as metabolomics standards initiative (MSI), COordination of Standards in MetabOlomicS (COSMOS) was introduced. COSMOS aims to link life science e-infrastructures within the worldwide metabolomics community as well as develop and maintain open source exchange formats for raw and processed data, ensuring better flow of metabolomics information
- …