3 research outputs found

    Surface-Independent Hierarchical Coatings with Superamphiphobic Properties

    No full text
    Facile approaches for the fabrication of substrate independent superamphiphobic surfaces that can repel both water and organic liquids have been limited. The design of such super-repellent surfaces is still a major challenge of surface chemistry and physics. Herein, we describe a simple and efficient dip-coating approach for the fabrication of highly hierarchical surface coatings with superamphiphobic properties for a broad range of materials based on a mussel-inspired dendritic polymer (MI-dPG). The MI-dPG coating process provides a precise roughness control, and the construction of highly hierarchical structures was achieved either directly by pH-controlled aggregation or in combination with nanoparticles (NP). Moreover, the fabrication of coatings with a thickness and roughness gradient was possible via simple adjustment of the depth of the coating solution. Subsequent postmodification of these highly hierarchical structures with fluorinated molecules yielded a surface with superamphiphobic properties that successfully prevented the wetting of liquids with a low surface tension down to about 30 mN/m. The generated superamphiphobic coatings exhibit impressive repellency to water, surfactant containing solutions, and biological liquids, such as human serum, and are flexible on soft substrates

    High-Antifouling Polymer Brush Coatings on Nonpolar Surfaces via Adsorption-Cross-Linking Strategy

    No full text
    A new “adsorption-cross-linking” technology is presented to generate a highly dense polymer brush coating on various nonpolar substrates, including the most inert and low-energy surfaces of poly­(dimethylsiloxane) and poly­(tetrafluoroethylene). This prospective surface modification strategy is based on a tailored bifunctional amphiphilic block copolymer with benzophenone units as the hydrophobic anchor/chemical cross-linker and terminal azide groups for in situ postmodification. The resulting polymer brushes exhibited long-term and ultralow protein adsorption and cell adhesion benefiting from the high density and high hydration ability of polyglycerol blocks. The presented antifouling brushes provided a highly stable and robust bioinert background for biospecific adsorption of desired proteins and bacteria after secondary modification with bioactive ligands, e.g., mannose for selective ConA and Escherichia coli binding

    Construction of Functional Coatings with Durable and Broad-Spectrum Antibacterial Potential Based on Mussel-Inspired Dendritic Polyglycerol and in Situ-Formed Copper Nanoparticles

    No full text
    A novel surface coating with durable broad-spectrum antibacterial ability was prepared based on mussel-inspired dendritic polyglycerol (MI-dPG) embedded with copper nanoparticles (Cu NPs). The functional surface coating is fabricated via a facile dip-coating process followed by in situ reduction of copper ions with a MI-dPG coating to introduce Cu NPs into the coating matrix. This coating has been demonstrated to possess efficient long-term antibacterial properties against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and kanamycin-resistant E. coli through an “attract–kill–release” strategy. The synergistic antibacterial activity of the coating was shown by the combination of two functions of the contact killing, reactive oxygen species production and Cu ions released from the coating. Furthermore, this coating inhibited biofilm formation and showed good compatibility to eukaryotic cells. Thus, this newly developed Cu NP-incorporated MI-dPG surface coating may find potential application in the design of antimicrobial coating, such as implantable devices
    corecore