16 research outputs found

    Studies with protein kinase C inhibitors presently available cannot elucidate the role of protein kinase C in the activation of NADPH oxidase

    Get PDF
    The effects of various protein kinase C (PKC) inhibitors on NADPH oxidase (NO) activation by the phorbol ester PMA and by the chemotactic peptide FMLP were studied. H-7 reduced the effects of both stimuli in human neutrophils (HN) and HL-60 cells by 13-63%. Polymyxin B did not inhibit NO activation by PMA and FMLP in HN and reduced the effects of both stimuli in HL-60 cells by 27-55%. Retinal and retinoic acid enhanced the effects of PMA and FMLP in HL-60 cells and of FMLP in HN up to 4.5-fold. In contrast, retinoic acid inhibited the effect of PMA in HN. In the presence of cytochalasin B, retinal inhibited the effect of FMLP in HN, whereas retinoic acid inhibited NO activation by FMLP in both cell types. The dual PKC/calmodulin inhibitors trifluoperazine and W-7 abolished NO activation by PMA and FMLP in HN and HL-60 cells. Thus, the effects of PKC inhibitors on NO activation exhibit (1) cell type specificity, (2) stimulus dependency and (3) no correlation with in vitro inhibition of PKC. Our results suggest that studies with PKC inhibitors presently available cannot clarify the role of PKC in NO activation

    Discovery of novel dual inhibitors of receptor tyrosine kinases EGFR and PDGFR-β related to anticancer drug resistance

    No full text
    With ongoing resistance problems against the marketed EGFR inhibitors having a quinazoline core scaffold there is a need for the development of novel inhibitors having a modified scaffold and, thus, expected lower EGFR resistance problems. An additional problem concerning EGFR inhibitor resistance is an observed heterodimerization of EGFR with PDGFR-β that neutralises the sole inhibitor activity towards EGFR. We developed novel pyrimido[4,5-b]indoles with varied substitution patterns at the 4-anilino residue to evaluate their EGFR and PDGFR-β inhibiting properties. We identified dual inhibitors of both EGFR and PDGFR-β in the nanomolar range which have been initially screened in cancer cell lines to prove a benefit of both EGFR and PDGFR-β inhibition

    Discovery of novel dual inhibitors of receptor tyrosine kinases EGFR and IGF-1R

    No full text
    Novel 4-benzylamino benzo-anellated pyrrolo[2,3-b]pyridines have been synthesized with varied substitution patterns both at the molecular scaffold of the benzo-anellated ring and at the 4-benzylamino residue. With a structural similarity to substituted thieno[2,3-d]pyrimidines as epidermal growth factor receptor (EGFR) inhibitors, we characterized the inhibition of EGFR for our novel compounds. As receptor heterodimerization gained certain interest as mechanism of cancer cells to become resistant against novel protein kinase inhibitors, we additionally measured the inhibition of insulin-like growth factor receptor IGF-1R which is a prominent receptor for such heterodimerizations with EGFR. Structure–activity relationships are discussed for both kinase inhibitions depending on the varied substitution patterns. We discovered novel dual inhibitors of both receptor tyrosine kinases with interest for further studies to reduce inhibitor resistance developments in cancer treatment

    Mouse-Derived Isograft (MDI) In Vivo Tumor Models I. Spontaneous sMDI Models: Characterization and Cancer Therapeutic Approaches

    No full text
    Syngeneic in vivo tumor models are valuable for the development and investigation of immune-modulating anti-cancer drugs. In the present study, we established a novel syngeneic in vivo model type named mouse-derived isografts (MDIs). Spontaneous MDIs (sMDIs) were obtained during a long-term observation period (more than one to two years) of naïve and untreated animals of various mouse strains (C3H/HeJ, CBA/J, DBA/2N, BALB/c, and C57BL/6N). Primary tumors or suspicious tissues were assessed macroscopically and re-transplanted in a PDX-like manner as small tumor pieces into sex-matched syngeneic animals. Nine outgrowing primary tumors were histologically characterized either as adenocarcinomas, histiocytic carcinomas, or lymphomas. Growth of the tumor pieces after re-transplantation displayed model heterogeneity. The adenocarcinoma sMDI model JA-0009 was further characterized by flow cytometry, RNA-sequencing, and efficacy studies. M2 macrophages were found to be the main tumor infiltrating leukocyte population, whereas only a few T cells were observed. JA-0009 showed limited sensitivity when treated with antibodies against inhibitory checkpoint molecules (anti-mPD-1 and anti-mCTLA-4), but high sensitivity to gemcitabine treatment. The generated sMDI are spontaneously occurring tumors of low passage number, propagated as tissue pieces in mice without any tissue culturing, and thus conserving the original tumor characteristics and intratumoral immune cell populations

    Mouse-Derived Isograft (MDI) In Vivo Tumor Models II. Carcinogen-Induced cMDI Models: Characterization and Cancer Therapeutic Approaches

    No full text
    In this second study, we established syngeneic in vivo models named carcinogen-induced mouse-derived isografts (cMDIs). Carcinogen-induced tumors were obtained during short-term observation (3⁻9 months) of CBA/J mice treated with various administration routes with 3-methylcholanthrene (MCA) or N-methyl-N-nitrosourea (MNU) as carcinogens. During necropsy, primary tumors and suspicious tissues were assessed macroscopically and re-transplanted (in PDX-like manner) into sex-matched syngeneic animals. Outgrowing tumors were histologically characterized as either spinocellular carcinoma (1/8) or various differentiated sarcomas (7/8). Growth curves of four sarcomas showed striking heterogeneity. These cMDIs were further characterized by flow cytometry, RNA sequencing, or efficacy studies. A variable invasion of immune cells into the tumors, as well as varying expression of tyrosine kinase receptor, IFN-γ signature, or immune cell population marker genes could be observed. Immune checkpoint inhibitor treatment (anti-mPD-1, anti-mCTLA-4, or a combination thereof) showed different responses in the various cMDI models. In general, cMDI models are carcinogen-induced tumors of low passage number that were propagated as tissue pieces in mice without any tissue culturing. Therefore, the tumors contained conserved tumor characteristics and intratumoral immune cell populations. In contrast to the previously described spontaneous MDI, carcinogen induction resulted in a greater number of individual but histologically related tumors, which were preferentially sarcomas

    Novel Protein Kinase Inhibitors Related to Tau Pathology Modulate Tau Protein-Self Interaction Using a Luciferase Complementation Assay

    No full text
    The current number of drugs available for the treatment of Alzheimer’s disease (AD) is strongly limited and their benefit for therapy is given only in the early state of the disease. An effective therapy should affect those processes which mainly contribute to the neuronal decay. There have been many approaches for a reduction of toxic Aβ peptides which mostly failed to halt cognitive deterioration in patients. The formation of neurofibrillary tangles (NFT) and its precursor tau oligomers have been suggested as main cause of neuronal degeneration because of a direct correlation of their density to the degree of dementia. Reducing of tau aggregation may be a viable approach for the treatment of AD. NFT consist of hyperphosphorylated tau protein and tau hyperphosphorylation reduces microtubule binding. Several protein kinases are discussed to be involved in tau hyperphosphorylation. We developed novel inhibitors of three protein kinases (gsk-3β, cdk5, and cdk1) and discussed their activity in relation to tau phosphorylation and on tau–tau interaction as a nucleation stage of a tau aggregation in cells. Strongest effects were observed for those inhibitors with effects on all the three kinases with emphasis on gsk-3β in nanomolar ranges
    corecore