5 research outputs found
Rapid eye movements during sleep in mice: High trait-like stability qualifies rapid eye movement density for characterization of phenotypic variation in sleep patterns of rodents
<p>Abstract</p> <p>Background</p> <p>In humans, rapid eye movements (REM) density during REM sleep plays a prominent role in psychiatric diseases. Especially in depression, an increased REM density is a vulnerability marker for depression. In clinical practice and research measurement of REM density is highly standardized. In basic animal research, almost no tools are available to obtain and systematically evaluate eye movement data, although, this would create increased comparability between human and animal sleep studies.</p> <p>Methods</p> <p>We obtained standardized electroencephalographic (EEG), electromyographic (EMG) and electrooculographic (EOG) signals from freely behaving mice. EOG electrodes were bilaterally and chronically implanted with placement of the electrodes directly between the musculus rectus superior and musculus rectus lateralis. After recovery, EEG, EMG and EOG signals were obtained for four days. Subsequent to the implantation process, we developed and validated an Eye Movement scoring in Mice Algorithm (EMMA) to detect REM as singularities of the EOG signal, based on wavelet methodology.</p> <p>Results</p> <p>The distribution of wakefulness, non-REM (NREM) sleep and rapid eye movement (REM) sleep was typical of nocturnal rodents with small amounts of wakefulness and large amounts of NREM sleep during the light period and reversed proportions during the dark period. REM sleep was distributed correspondingly. REM density was significantly higher during REM sleep than NREM sleep. REM bursts were detected more often at the end of the dark period than the beginning of the light period. During REM sleep REM density showed an ultradian course, and during NREM sleep REM density peaked at the beginning of the dark period. Concerning individual eye movements, REM duration was longer and amplitude was lower during REM sleep than NREM sleep. The majority of single REM and REM bursts were associated with micro-arousals during NREM sleep, but not during REM sleep.</p> <p>Conclusions</p> <p>Sleep-stage specific distributions of REM in mice correspond to human REM density during sleep. REM density, now also assessable in animal models through our approach, is increased in humans after acute stress, during PTSD and in depression. This relationship can now be exploited to match animal models more closely to clinical situations, especially in animal models of depression.</p
Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression
<p>Abstract</p> <p>Background</p> <p>Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.</p> <p>Results</p> <p>Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz), alpha (10-15 Hz) and eta (16-22.75 Hz) bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored across the light-dark cycle.</p> <p>Conclusions</p> <p>The HR mice, i.e. those animals that have a genetic predisposition to hyper-activating their HPA axis in response to stressors, showed disturbed patterns in sleep architecture, similar to what is known from depressed patients. Significant alterations in several frequency bands of the EEG, which also seem to at least partly mimic clinical observations, suggest the SR mouse lines as a promising animal model for basic research of mechanisms underlying sleep impairments in MD.</p
Central Deficiency of Corticotropin-Releasing Hormone Receptor Type 1 (CRH-R1) Abolishes Effects of CRH on NREM But Not on REM Sleep in Mice
Study Objectives: Corticotropin-releasing hormone (CRH) is the major activator of the hypothalamic-pituitary-adrenocortical (HPA) system and orchestrates the neuroendocrine, autonomous as well as behavioral responses to stress. Many studies suggest an influence of CRH on sleep-wake regulation even in the absence of stressors. However, none of these studies yet clearly distinguished between central and peripheral effects of CRH. Therefore, we investigated in CNS-specific CRH receptor type 1 deficient mice whether centrally administered CRH could induce its sleep-wake modulatory effects without peripheral induction of HPA activity. Design: Male mice (C57BL/6J, CNS-specific CRH-R1 knockout [CKO] mice and their control littermates [CL]) were intracerebroventricularily (i.c.v.) injected with vehicle or 3 different doses of CRH shortly before the beginning of the light period. Electroencephalogram (EEG) and electromyogram (EMG) were monitored to compare the effects of CRH on vigilance states with or without presence of central CRH-R1. To quantify HPA-axis reactivity to CRH injections in CKO and CL animals, blood samples were analyzed to determine plasma corticosterone concentrations. Results: I.c.v, injections of CRH promoted wakefulness while decreasing NREMS in C57BL/6J and CRH-R1 CL animals, whereas such changes were not exerted in CKO mice. However, REMS suppression after CRH application persisted in all animals. I.c.v. injected CRH increased plasma corticosterone levels in both CL and CKO mice. Conclusions: The results demonstrated that CRH has a major impact on wake and NREMS regulation which is predominantly mediated through central CRH-R1. Peripheral actions of CRH, i.e., elevated HPA activity, may interfere with its central effects on REMS but not on NREMS suppression