53 research outputs found

    Lysosomal acid lipase regulates VLDL synthesis and insulin sensitivity in mice

    Get PDF
    AIMS/HYPOTHESIS: Lysosomal acid lipase (LAL) hydrolyses cholesteryl esters and triacylglycerols (TG) within lysosomes to mobilise NEFA and cholesterol. Since LAL-deficient (Lal (-/-) ) mice suffer from progressive loss of adipose tissue and severe accumulation of lipids in hepatic lysosomes, we hypothesised that LAL deficiency triggers alternative energy pathway(s). METHODS: We studied metabolic adaptations in Lal (-/-) mice. RESULTS: Despite loss of adipose tissue, Lal (-/-) mice show enhanced glucose clearance during insulin and glucose tolerance tests and have increased uptake of [(3)H]2-deoxy-D-glucose into skeletal muscle compared with wild-type mice. In agreement, fasted Lal (-/-) mice exhibit reduced glucose and glycogen levels in skeletal muscle. We observed 84% decreased plasma leptin levels and significantly reduced hepatic ATP, glucose, glycogen and glutamine concentrations in fed Lal (-/-) mice. Markedly reduced hepatic acyl-CoA concentrations decrease the expression of peroxisome proliferator-activated receptor α (PPARα) target genes. However, treatment of Lal (-/-) mice with the PPARα agonist fenofibrate further decreased plasma TG (and hepatic glucose and glycogen) concentrations in Lal (-/-) mice. Depletion of hepatic nuclear factor 4α and forkhead box protein a2 in fasted Lal (-/-) mice might be responsible for reduced expression of microsomal TG transfer protein, defective VLDL synthesis and drastically reduced plasma TG levels. CONCLUSIONS/INTERPRETATION: Our findings indicate that neither activation nor inactivation of PPARα per se but rather the availability of hepatic acyl-CoA concentrations regulates VLDL synthesis and subsequent metabolic adaptations in Lal (-/-) mice. We conclude that decreased plasma VLDL production enhances glucose uptake into skeletal muscle to compensate for the lack of energy supply

    VASCo: computation and visualization of annotated protein surface contacts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions.</p> <p>Results</p> <p>VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in.</p> <p>Conclusion</p> <p>VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.</p

    Structure‐Based Demystification of Radical Catalysis by a Coenzyme B12_{12} Dependent Enzyme—Crystallographic Study of Glutamate Mutase with Cofactor Homologues

    No full text
    Catalysis by radical enzymes dependent on coenzyme B12_{12} (AdoCbl) relies on the reactive primary 5′-deoxy-5′adenosyl radical, which originates from reversible Co−C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012^{12}-fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co−C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including “negative catalysis”, a paradigm for AdoCbl-dependent mutases

    Navigation in Long Forms on Smartphones: Scrolling Worse than Tabs, Menus, and Collapsible Fieldsets

    No full text
    International audienceMobile applications provide increasingly complex functionality through form-based user interfaces, which requires effective solutions for navigation on small-screen devices. This paper contributes a comparative usability evaluation of four navigation design patterns: Scrolling, Tabs, Menus, and Collapsible Fieldsets. These patterns were evaluated in a case study on social network profile pages. Results show that memorability, usability, overview, and subjective preference were worse in Scrolling than in the other patterns. This indicates that designers of form-based user interfaces on small-screen devices should not rely on Scrolling to support navigation, but use other design patterns instead
    corecore