2 research outputs found

    Supplementary information files for Monthly sampling reveals seasonal fine sediment fluctuations and riverine invertebrate community responses

    No full text
    Supplementary files for article Monthly sampling reveals seasonal fine sediment fluctuations and riverine invertebrate community responsesManaging the impacts of anthropogenically enhanced deposited fine sediment levels in lotic ecosystems requires understanding of how catchment land-use changes have altered the natural sediment regime (erosion, transport, deposition) of rivers. Unfortunately, no existing studies have employed an appropriate sampling frequency over a period encompassing the full range of seasonal flow conditions expected to influence in-stream sediment dynamics. We determined the short-term (monthly) dynamics of deposited fine sediment and invertebrate communities over 12-months in 15 fourth- and fifth-order rivers draining catchments of low, medium and high land-use intensity in Southland, New Zealand to determine when and where fine sediment threatens stream health. We compared the Quorer resuspension method (suspendable inorganic sediment, SIS) and the in-stream visual sediment cover assessment method, and evaluated the effectiveness of four commonly-used invertebrate stream health metrics against their newly developed sediment-specific counterparts. Monthly variability in SIS was substantial across all land-use categories, but became more pronounced as land-use intensity increased. All 15 sites experienced a prolonged period of relatively stable flow which coincided with the largest short-term increase in SIS at 14 of the 15 sites. However, variability in SIS was not mirrored in macroinvertebrate metrics. These findings suggest that controlling inputs of fine sediment to rivers and streams will be most effective when targeted at periods of prolonged stable flow, particularly within high land-use intensity catchments. The resuspension method consistently outperformed visual estimates when considering its relationship with macroinvertebrate metrics, while sediment-specific metrics demonstrated a stronger association with fine sediment than commonly employed metrics e.g. (%EPT). We conclude that restoration/mitigation practices cannot be based solely on short-term, or even long-term, reductions in fine sediment, or on physical measures alone, but should be based on long-term recoveries of sediment-impacted invertebrate communities using concurrent measurements of both biotic and abiotic conditions.</p

    Supplementary information files for Freshwater invertebrate responses to fine sediment stress: a multiā€continent perspective

    No full text
    Ā© the authors, CC-BY 4.0Supplemental files for article Freshwater invertebrate responses to fine sediment stress: a multiā€continent perspectiveExcessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles.</p
    corecore