245 research outputs found

    Formalization, Mechanization and Automation of G\"odel's Proof of God's Existence

    Full text link
    G\"odel's ontological proof has been analysed for the first-time with an unprecedent degree of detail and formality with the help of higher-order theorem provers. The following has been done (and in this order): A detailed natural deduction proof. A formalization of the axioms, definitions and theorems in the TPTP THF syntax. Automatic verification of the consistency of the axioms and definitions with Nitpick. Automatic demonstration of the theorems with the provers LEO-II and Satallax. A step-by-step formalization using the Coq proof assistant. A formalization using the Isabelle proof assistant, where the theorems (and some additional lemmata) have been automated with Sledgehammer and Metis.Comment: 2 page

    The Wise Men Puzzle (Isabelle/HOL dataset)

    Get PDF
    The authors universal (meta-)logical reasoning approach is demonstrated and assessed with a prominent riddle in epistemic reasoning: the Wise Men Puzzle. The presented solution puts a particular emphasis on the adequate modeling of common knowledge and it illustrates the elegance and the practical relevance of the shallow semantical embedding approach when utilized within modern proof assistant systems such as Isabelle/HOL. The contributed dataset provides supporting evidence for claims made in the article “Universal (meta-)logical reasoning: Recent successes” (Benzmüller, 2019)

    Systematic Verification of the Modal Logic Cube in Isabelle/HOL

    Get PDF
    We present an automated verification of the well-known modal logic cube in Isabelle/HOL, in which we prove the inclusion relations between the cube's logics using automated reasoning tools. Prior work addresses this problem but without restriction to the modal logic cube, and using encodings in first-order logic in combination with first-order automated theorem provers. In contrast, our solution is more elegant, transparent and effective. It employs an embedding of quantified modal logic in classical higher-order logic. Automated reasoning tools, such as Sledgehammer with LEO-II, Satallax and CVC4, Metis and Nitpick, are employed to achieve full automation. Though successful, the experiments also motivate some technical improvements in the Isabelle/HOL tool.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    LeoPARD --- A Generic Platform for the Implementation of Higher-Order Reasoners

    Get PDF
    LeoPARD supports the implementation of knowledge representation and reasoning tools for higher-order logic(s). It combines a sophisticated data structure layer (polymorphically typed {\lambda}-calculus with nameless spine notation, explicit substitutions, and perfect term sharing) with an ambitious multi-agent blackboard architecture (supporting prover parallelism at the term, clause, and search level). Further features of LeoPARD include a parser for all TPTP dialects, a command line interpreter, and generic means for the integration of external reasoners.Comment: 6 pages, to appear in the proceedings of CICM'2015 conferenc

    Computer Science and Metaphysics: A Cross-Fertilization

    Full text link
    Computational philosophy is the use of mechanized computational techniques to unearth philosophical insights that are either difficult or impossible to find using traditional philosophical methods. Computational metaphysics is computational philosophy with a focus on metaphysics. In this paper, we (a) develop results in modal metaphysics whose discovery was computer assisted, and (b) conclude that these results work not only to the obvious benefit of philosophy but also, less obviously, to the benefit of computer science, since the new computational techniques that led to these results may be more broadly applicable within computer science. The paper includes a description of our background methodology and how it evolved, and a discussion of our new results.Comment: 39 pages, 3 figure

    Mechanizing Principia Logico-Metaphysica in Functional Type Theory

    Full text link
    Principia Logico-Metaphysica contains a foundational logical theory for metaphysics, mathematics, and the sciences. It includes a canonical development of Abstract Object Theory [AOT], a metaphysical theory (inspired by ideas of Ernst Mally, formalized by Zalta) that distinguishes between ordinary and abstract objects. This article reports on recent work in which AOT has been successfully represented and partly automated in the proof assistant system Isabelle/HOL. Initial experiments within this framework reveal a crucial but overlooked fact: a deeply-rooted and known paradox is reintroduced in AOT when the logic of complex terms is simply adjoined to AOT's specially-formulated comprehension principle for relations. This result constitutes a new and important paradox, given how much expressive and analytic power is contributed by having the two kinds of complex terms in the system. Its discovery is the highlight of our joint project and provides strong evidence for a new kind of scientific practice in philosophy, namely, computational metaphysics. Our results were made technically possible by a suitable adaptation of Benzm\"uller's metalogical approach to universal reasoning by semantically embedding theories in classical higher-order logic. This approach enables one to reuse state-of-the-art higher-order proof assistants, such as Isabelle/HOL, for mechanizing and experimentally exploring challenging logics and theories such as AOT. Our results also provide a fresh perspective on the question of whether relational type theory or functional type theory better serves as a foundation for logic and metaphysics.Comment: 14 pages, 6 figures; preprint of article with same title to appear in The Review of Symbolic Logi
    corecore