3 research outputs found

    Additional file 2: of Inferring active regulatory networks from gene expression data using a combination of prior knowledge and enrichment analysis

    No full text
    Mouse Test case results. Additional file 2 is a folder containing the detailed results of the Mouse Test case in HTML format. Each file includes the respective calculated enrichments for TFs, miRNAs, KEGG pathways, KEGG pathway categories and GO terms. In order to view the results a standard web-browser is needed (Chrome and Mozilla Firefox have been tested). The HTML files must be opened from inside the folder because additional files (images and javascripts) which are needed for the correct view of the results are included. (ZIP 83 kb

    Targeted Metabolic Profiling of the Tg197 Mouse Model Reveals Itaconic Acid as a Marker of Rheumatoid Arthritis

    No full text
    Rheumatoid arthritis is a progressive, highly debilitating disease where early diagnosis, enabling rapid clinical intervention, would provide obvious benefits to patients, healthcare systems, and society. Novel biomarkers that enable noninvasive early diagnosis of the onset and progression of the disease provide one route to achieving this goal. Here a metabolic profiling method has been applied to investigate disease development in the Tg197 arthritis mouse model. Hind limb extract profiling demonstrated clear differences in metabolic phenotypes between control (wild type) and Tg197 transgenic mice and highlighted raised concentrations of itaconic acid as a potential marker of the disease. These changes in itaconic acid concentrations were moderated or indeed reversed when the Tg197 mice were treated with the anti-hTNF biologic infliximab (10 mg/kg twice weekly for 6 weeks). Further in vitro studies on synovial fibroblasts obtained from healthy wild-type, arthritic Tg197, and infliximab-treated Tg197 transgenic mice confirmed the association of itaconic acid with rheumatoid arthritis and disease-moderating drug effects. Preliminary indications of the potential value of itaconic acid as a translational biomarker were obtained when studies on K4IM human fibroblasts treated with hTNF showed an increase in the concentrations of this metabolite
    corecore