17 research outputs found

    Carbon monoxide formation during aerobic biostabilization of the organic fraction of municipal solid waste: the influence of technical parameters in a full-scale treatment system

    Get PDF
    The present study sought to investigate the formation of carbon monoxide (CO) during aerobic biostabilization (AB) of the organic fraction of municipal solid waste (OFMSW) in forced aerated piles. Understanding the factors influencing CO formation may be important not only for safety, but also for environmental and technical reasons. The objective of the study was to determine the effect of the technical parameters of the piles on the concentration of CO in the process gas during AB of the OFMSW in a full-scale waste treatment system: rate of waste aeration (from 3365 to 12,744 m3∙Mg−1), waste mass loads in the pile (from 391 to 702 Mg), thermal conditions, application of sidewalls as an element of pile bioreactor construction, concentration of O2 and CO2 in the waste piles and the duration of the process from 6 to 9 weeks. The temperature and concentration of O2, CO2, CO, CH4 were measured in each pile at weekly intervals. All six reactors provide stable thermal and aerobic conditions, but the presence of CO was observed, ranging from a few to over 2000 ppm, which demonstrated that ensuring optimum conditions for the process is not sufficient for CO to be eliminated. A moderate, non-linear rise in CO concentration was observed along with a rise in the temperature inside the reactors. Concentrations of CO were not highly correlated with those of O2 or CO2. An increase in waste mass loads increased the CO concentration in waste piles, while application of sidewalls decreased CO concentration. Increasing aeration rate had an influence on CO production, and the highest CO concentrations were noted under air flow rate 5.3 m3·Mg−1·h−1

    The influence of migratory Paraburkholderia on growth and competition of wood-decay fungi

    Get PDF
    Certain bacteria are capable of migrating along fungal hyphae, using them as a dispersal mechanism to cross otherwise-prohibitory distances. Three strains of fungal-migratory Paraburkholderia were isolated from the mycelium of wood-decay fungi, and inoculated onto ten strains of wood-decay fungi growing on solid agar medium. Two of the three bacteria were able to migrate along the hyphae of all fungi, although to differing extents. No bacteria-associated growth inhibition was observed with eight of the ten fungi, but mycelial extension rate of two strains of Phanerochaete was significantly reduced. Bacteria were also introduced into fungus-fungus competitive pairings, and significantly reduced the competitive performance of one of the Phanerochaete strains. Additionally, in several cases, introducing bacteria into competitive interactions made the outcome unpredictable, whereas in the absence of bacteria one fungus was consistently dominant. This is the first time that bacteria have been shown to influence fungal inter-specific competition

    Fungal control of early-stage bacterial community development in decomposing wood

    Get PDF
    The earliest stages of bacterial colonisation of wood have received little attention, particularly with respect to how the colonisation process may be affected by the presence of wood-decay fungi. This study used 16s rRNA gene sequencing to examine the bacterial community in wood that had been incubated in the field for 14 or 84 d, either in wood uncolonised by fungi or pre-colonised by Vuilleminia comedens, Trametes versicolor or Hypholoma fasciculare. All three fungal species significantly delayed bacterial colonisation of the wood. V. comedens and H. fasciculare also reduced bacterial OTU richness and altered bacterial community composition, increasing the relative abundance of Burkholderiales and reducing the proportion of Enterobacteriaceae and Bacteroidetes. Wood that had not been pre-colonised showed seasonal differences between autumn and spring: bacterial richness increased between 14 d and 84 d in the spring, but not in the autumn. Community composition at 84 d in spring was also different to the other time points, with reduced dominance of Gamma-proteobacteria. Archaea were also detected in nearly a third of samples, but with no apparent pattern, and always at low abundances

    Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency

    Get PDF
    With an increasing human population access to ruminant products is an important factor in global food supply. While ruminants contribute to climate change, climate change could also affect ruminant production. Here we investigated how the plant response to climate change affects forage quality and subsequent rumen fermentation. Models of near future climate change (2050) predict increases in temperature, CO2, precipitation and altered weather systems which will produce stress responses in field crops. We hypothesised that pre-exposure to altered climate conditions causes compositional changes and also primes plant cells such that their post-ingestion metabolic response to the rumen is altered. This “stress memory” effect was investigated by screening ten forage grass varieties in five differing climate scenarios, including current climate (2020), future climate (2050), or future climate plus flooding, drought or heat shock. While varietal differences in fermentation were detected in terms of gas production, there was little effect of elevated temperature or CO2 compared with controls (2020). All varieties consistently showed decreased digestibility linked to decreased methane production as a result of drought or an acute flood treatment. These results indicate that efforts to breed future forage varieties should target tolerance of acute stress rather than long term climate

    Fruitomics: The importance of combining sensory and chemical analyses in assessing cold storage responses of six peach (Prunus persica L. Batsch) cultivars

    Get PDF
    Cold storage is used to extend peach commercial life, but can affect quality. Quality changes are assessed through the content of nutritionally relevant compounds, aroma, physical characters and/or sensorially. Here, six peach and nectarine cultivars were sampled at commercial harvest and after 7 days of 1 °C storage. A trained panel was used to evaluate sensorial characters, while carotenoids, phenolics, vitamin C, total sugars, and qualitative traits including firmness, titrable acidity and soluble solid content were integrated with volatile organic compound (VOC) analysis previously reported. The different analyses reveal interesting patterns of correlation, and the six cultivars responded differently to cold storage. Sensory parameters were correlated with 64 VOCs and seven intrinsic characters. Acidity, firmness, and 10 VOCs were strongly negatively correlated with harmony and sweetness, but positively correlated with bitterness, astringency, and crunchiness. In contrast, Brix, b-carotene, and six VOCs were positively correlated with harmony and sweetness

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Storage time and temperature affects volatile organic compound profile, alliinase activity and postharvest quality of garlic

    Get PDF
    Garlic (Allium sativum L.) has a long history of use as a culinary seasoning and source of health-promoting compounds. In particular organosulphur compounds derived from the action of alliinase on alliin are of interest for their antimicrobial action. Due to the seasonal nature of the garlic harvest, long-term storage is required to ensure year-round supply of high-quality bulbs. However, quality is known to deteriorate throughout storage, and storage regimes are aimed at maintaining culinary, not biochemical quality, posing challenges for biotech firms extracting high value products, such as alliinase, from garlic. Storage typically involves extended periods of up to 9 months at -1.5 °C. Here, quality parameters (disease incidence and moisture content) as well as biotechnological quality parameters (alliinase yield and activity) were measured, and correlated with gene expression and volatile organic compound (VOC) profiles comparing storage at -1.5 °C and 22 °C. The aim is to develop potential molecular markers for garlic quality assessment. Alliinase activity fell in the first 6 months of storage, with garlic stored at -1.5 °C losing more activity, however 22 °C stored garlic suffered higher spoilage after 12 months storage. Alliinase activity loss was not proportional to gene transcript levels, suggesting post-translational control. A total of 150 VOCs were detected across all samples using thermal desorption gas chromatography, time of flight mass spectrometry of intact garlic bulbs, the most abundant of which were organosulphur compounds. Storage temperature significantly affected the whole VOC profile and discrete profiles were detected from garlic cold-stored for different time periods. Using weighted correlation network analysis 17 VOCs were identified that correlated with storage time, six VOCs that were indicative for storage temperature and four VOCs (azulene, octanal, o-Xylene and 4-methylhexadecane) were significantly associated with alliinase activity

    Author Correction: Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency

    Get PDF
    With an increasing human population access to ruminant products is an important factor in global food supply. While ruminants contribute to climate change, climate change could also affect ruminant production. Here we investigated how the plant response to climate change affects forage quality and subsequent rumen fermentation. Models of near future climate change (2050) predict increases in temperature, CO(2), precipitation and altered weather systems which will produce stress responses in field crops. We hypothesised that pre-exposure to altered climate conditions causes compositional changes and also primes plant cells such that their post-ingestion metabolic response to the rumen is altered. This “stress memory” effect was investigated by screening ten forage grass varieties in five differing climate scenarios, including current climate (2020), future climate (2050), or future climate plus flooding, drought or heat shock. While varietal differences in fermentation were detected in terms of gas production, there was little effect of elevated temperature or CO(2) compared with controls (2020). All varieties consistently showed decreased digestibility linked to decreased methane production as a result of drought or an acute flood treatment. These results indicate that efforts to breed future forage varieties should target tolerance of acute stress rather than long term climate
    corecore