4 research outputs found

    Analysis and classification of oncology activities on the way to workflow based single source documentation in clinical information systems

    Get PDF
    BACKGROUND: Today, cancer documentation is still a tedious task involving many different information systems even within a single institution and it is rarely supported by appropriate documentation workflows. METHODS: In a comprehensive 14 step analysis we compiled diagnostic and therapeutic pathways for 13 cancer entities using a mixed approach of document analysis, workflow analysis, expert interviews, workflow modelling and feedback loops. These pathways were stepwise classified and categorized to create a final set of grouped pathways and workflows including electronic documentation forms. RESULTS: A total of 73 workflows for the 13 entities based on 82 paper documentation forms additionally to computer based documentation systems were compiled in a 724 page document comprising 130 figures, 94 tables and 23 tumour classifications as well as 12 follow-up tables. Stepwise classification made it possible to derive grouped diagnostic and therapeutic pathways for the three major classes - solid entities with surgical therapy - solid entities with surgical and additional therapeutic activities and - non-solid entities. For these classes it was possible to deduct common documentation workflows to support workflow-guided single-source documentation. CONCLUSIONS: Clinical documentation activities within a Comprehensive Cancer Center can likely be realized in a set of three documentation workflows with conditional branching in a modern workflow supporting clinical information system

    Quality of human-computer interaction - results of a national usability survey of hospital-IT in Germany

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the increasing functionality of medical information systems, it is hard to imagine day to day work in hospitals without IT support. Therefore, the design of dialogues between humans and information systems is one of the most important issues to be addressed in health care. This survey presents an analysis of the current quality level of human-computer interaction of healthcare-IT in German hospitals, focused on the users' point of view.</p> <p>Methods</p> <p>To evaluate the usability of clinical-IT according to the design principles of EN ISO 9241-10 the IsoMetrics Inventory, an assessment tool, was used. The focus of this paper has been put on suitability for task, training effort and conformity with user expectations, differentiated by information systems. Effectiveness has been evaluated with the focus on interoperability and functionality of different IT systems.</p> <p>Results</p> <p>4521 persons from 371 hospitals visited the start page of the study, while 1003 persons from 158 hospitals completed the questionnaire. The results show relevant variations between different information systems.</p> <p>Conclusions</p> <p>Specialised information systems with defined functionality received better assessments than clinical information systems in general. This could be attributed to the improved customisation of these specialised systems for specific working environments. The results can be used as reference data for evaluation and benchmarking of human computer engineering in clinical health IT context for future studies.</p

    Homologous COVID-19 BNT162b2 mRNA Vaccination at a German Tertiary Care University Hospital: A Survey-Based Analysis of Reactogenicity, Safety, and Inability to Work among Healthcare Workers

    No full text
    At the start of the SARS-CoV-2 pandemic, healthcare workers had an increased risk of acquiring coronavirus disease (COVID)-19. As tertiary care hospitals are critical for the treatment of severely ill patients, the University Hospital Erlangen offered BNT162b2 mRNA vaccination against COVID-19 to all employees when the vaccine became available in Germany. Here, we performed a survey to assess the age- and sex-dependent reactogenicity and safety of BNT162b2 in a real-life setting with a special emphasis on the rate of vaccine-related incapacity to work amongst the employees. All vaccinated employees were invited to participate in the survey and received access to an electronic questionnaire between 31 March and 14 June 2021, which allowed them to report local and systemic adverse effects after the first or second vaccine dose. A total of 2372 employees completed the survey. After both the first and second dose, women had a higher risk than men for vaccine-related systemic side effects (odds ratio (OR) 1.48 (1.24–1.77) and 1.49 (1.23–1.81), respectively) and for inability to work (OR 1.63 (1.14–2.34) and 1.85 (1.52–2.25), respectively). Compared to employees ≥ 56 years of age, younger vaccinated participants had a higher risk of systemic reactions after the first (OR 1.35 (1.07–1.70)) and second vaccination (OR 2.08 (1.64–2.63)) and were more often unable to work after dose 2 (OR 2.20 (1.67–2.88)). We also recorded four anaphylactic reactions and received two reports of severe adverse effects indicative of vaccine complications. After the first and second vaccination, 7.9% and 34.7% of the survey participants, respectively, were temporarily unable to work, which added up to 1700 days of sick leave in this cohort. These real-life data extend previous results on the reactogenicity and safety of BNT162b2. Loss of working time due to vaccine-related adverse effects was substantial, but was outweighed by the potential benefit of prevented cases of COVID-19

    Reactogenicity Correlates Only Weakly with Humoral Immunogenicity after COVID-19 Vaccination with BNT162b2 mRNA (Comirnaty®)

    No full text
    mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as BNT162b2 (Comirnaty®), have proven to be highly immunogenic and efficient but also show marked reactogenicity, leading to adverse effects (AEs). Here, we analyzed whether the severity of AEs predicts the antibody response against the SARS-CoV-2 spike protein. Healthcare workers without prior SARS-CoV-2 infection, who received a prime-boost vaccination with BNT162b2, completed a standardized electronic questionnaire on the duration and severity of AEs. Serum specimens were collected two to four weeks after the boost vaccination and tested with the COVID-19 ELISA IgG (Vircell-IgG), the LIAISON® SARS-CoV-2 S1/S2 IgG CLIA (DiaSorin-IgG) and the iFlash-2019-nCoV NAb surrogate neutralization assay (Yhlo-NAb). A penalized linear regression model fitted by machine learning was used to correlate AEs with antibody levels. Eighty subjects were enrolled in the study. Systemic, but not local, AEs occurred more frequently after the boost vaccination. Elevated SARS-CoV-2 IgG antibody levels were measured in 92.5% of subjects with Vircell-IgG and in all subjects with DiaSorin-IgG and Yhlo-NAb. Gender, age and BMI showed no association with the antibody levels or with the AEs. The linear regression model identified headache, malaise and nausea as AEs with the greatest variable importance for higher antibody levels (Vircell-IgG and DiaSorin-IgG). However, the model performance for predicting antibody levels from AEs was very low for Vircell-IgG (squared correlation coefficient r2 = 0.04) and DiaSorin-IgG (r2 = 0.06). AEs did not predict the surrogate neutralization (Yhlo-NAb) results. In conclusion, AEs correlate only weakly with the SARS-CoV-2 spike protein antibody levels after COVID-19 vaccination with BNT162b2 mRNA
    corecore