20 research outputs found

    Universality and Scaling at the Onset of Quantum Black Hole Formation

    Full text link
    In certain two-dimensional models, collapsing matter forms a black hole if and only if the incoming energy flux exceeds the Hawking radiation rate. Near the critical threshold, the black hole mass is given by a universal formula in terms of the distance from criticality, and there exists a scaling solution describing the formation and evaporation of an arbitrarily small black hole.Comment: 9 pages, 3 figures (uuencoded

    Polyhomogeneity and zero-rest-mass fields with applications to Newman-Penrose constants

    Get PDF
    A discussion of polyhomogeneity (asymptotic expansions in terms of 1/r1/r and lnr\ln r) for zero-rest-mass fields and gravity and its relation with the Newman-Penrose (NP) constants is given. It is shown that for spin-ss zero-rest-mass fields propagating on Minkowski spacetime, the logarithmic terms in the asymptotic expansion appear naturally if the field does not obey the ``Peeling theorem''. The terms that give rise to the slower fall-off admit a natural interpretation in terms of advanced field. The connection between such fields and the NP constants is also discussed. The case when the background spacetime is curved and polyhomogeneous (in general) is considered. The free fields have to be polyhomogeneous, but the logarithmic terms due to the connection appear at higher powers of 1/r1/r. In the case of gravity, it is shown that it is possible to define a new auxiliary field, regular at null infinity, and containing some relevant information on the asymptotic behaviour of the spacetime. This auxiliary zero-rest-mass field ``evaluated at future infinity (i+i^+)'' yields the logarithmic NP constants.Comment: 19 page

    Quasilocal Thermodynamics of Kerr and Kerr-anti-de Sitter Spacetimes and the AdS/CFT Correspondence

    Get PDF
    We consider the quasilocal thermodynamics of rotating black holes in asymptotically flat and asymptotically anti de Sitter spacetimes. Using the minimal number of intrinsic boundary counterterms inspired by the AdS/CFT correspondence, we find that we are able to carry out an analysis of the thermodynamics of these black holes for virtually all possible values of the rotation parameter and cosmological constant that leave the quasilocal boundary well-defined, going well beyond what is possible with background subtraction methods. Specifically, we compute the quasilocal energy EE and angular momentum JJ for arbitrary values of the rotation, mass and cosmological constant parameters for the 3+1 dimensional Kerr, Kerr-AdS black holes and 2+1 dimensional BTZ black hole. We perform a quasilocal stability analysis and find phase behavior that is commensurate with previous analyses carried out at infinity.Comment: Latex, 43 pages, 22 eps figures, several typos corrected, final version to appear in Phys. Rev.

    Clean Time-Dependent String Backgrounds from Bubble Baths

    Full text link
    We consider the set of controlled time-dependent backgrounds of general relativity and string theory describing ``bubbles of nothing'', obtained via double analytic continuation of black hole solutions. We analyze their quantum stability, uncover some novel features of their dynamics, identify their causal structure and observables, and compute their particle production spectrum. We present a general relation between squeezed states, such as those arising in cosmological particle creation, and nonlocal theories on the string worldsheet. The bubble backgrounds have various aspects in common with de Sitter space, Rindler space, and moving mirror systems, but constitute controlled solutions of general relativity and string theory with no external forces. They provide a useful theoretical laboratory for studying issues of observables in systems with cosmological horizons, particle creation, and time-dependent string perturbation theory.Comment: 38 pages, harvmac big, 6 figure

    On the Spiral Structure of NGC 2915 and Dark Matter

    Get PDF
    NGC 2915 is a blue compact dwarf galaxy embedded in an extended, low surface brightness HI disk exhibiting a two-armed spiral structure and a central bar-like component. Commonly accepted mechanisms are unable to explain the existence of these patterns and Bureau et al. proposed disk dark matter (scaling with the HI distribution) or a rotating triaxial dark halo as alternative solutions. In an attempt to explore these mechanisms, hydrodynamical simulations were run for each case and compared to observations using customized column density and kinematic constraints. The spiral structure can be accounted for both by an unseen bar or triaxial halo, the former fitting the observations slightly better. However, the large bar mass or halo pattern frequency required make it unlikely that the spiral wave is driven by an external perturber. In particular, the spin parameter is much higher than predicted by current cold dark matter (CDM) structure formation scenarios. The massive disk models show that when the observed gas surface density is scaled up by a factor about 10, the disk develops a spiral structure resembling closely the observed one, in perturbed density as well as perturbed velocity. This is consistent with more limited studies in other galaxies and suggests that the disk of NGC 2915 contains much more mass than is visible, tightly linked to the neutral hydrogen. A classic (quasi-)spherical halo is nevertheless still required, as increasing the disk mass further to fit the circular velocity curve would make the disk violently unstable. Scaling the observed surface density profile by an order of magnitude brings the disk and halo masses to comparable values within the disk radius.Comment: Accepted for publication in ApJ. Full resolution figures available at http://www.star.qmul.ac.uk/~masset/publications.htm

    Energy Release During Disk Accretion onto a Rapidly Rotating Neutron Star

    Get PDF
    The energy release L_s on the surface of a neutron star (NS) with a weak magnetic field and the energy release L_d in the surrounding accretion disk depend on two independent parameters that determine its state (for example, mass M and cyclic rotation frequency f) and is proportional to the accretion rate. We derive simple approximation formulas illustrating the dependence of the efficiency of energy release in an extended disk and in a boundary layer near the NS surface on the frequency and sense of rotation for various NS equations of state. Such formulas are obtained for the quadrupole moment of a NS, for a gap between its surface and a marginally stable orbit, for the rotation frequency in an equatorial Keplerian orbit and in the marginally stable circular orbit, and for the rate of NS spinup via disk accretion. In the case of NS and disk counterrotation, the energy release during accretion can reach 0.67M˙c20.67\dot{M}c^2. The sense of NS rotation is a factor that strongly affects the observed ratio of nuclear energy release during bursts to gravitational energy release between bursts in X-ray bursters. The possible existence of binary systems with NS and disk counterrotation in the Galaxy is discussed. Based on the static criterion for stability, we present a method of constructing the dependence of gravitational mass M on Kerr rotation parameter j and on total baryon mass (rest mass) m for a rigidly rotating neutron star. We show that all global NS characteristics can be expressed in terms of the function M(j, m) and its derivatives.Comment: 42 pages, 12 figures, to appear in Astronomy Letters, 2000, v.26, p.69

    Naked Singularity Formation In f(R) Gravity

    Full text link
    We study the gravitational collapse of a star with barotropic equation of state p=wρp=w\rho in the context of f(R)f({\mathcal R}) theories of gravity. Utilizing the metric formalism, we rewrite the field equations as those of Brans-Dicke theory with vanishing coupling parameter. By choosing the functionality of Ricci scalar as f(R)=αRmf({\mathcal R})=\alpha{\mathcal R}^{m}, we show that for an appropriate initial value of the energy density, if α\alpha and mm satisfy certain conditions, the resulting singularity would be naked, violating the cosmic censorship conjecture. These conditions are the ratio of the mass function to the area radius of the collapsing ball, negativity of the effective pressure, and the time behavior of the Kretschmann scalar. Also, as long as parameter α\alpha obeys certain conditions, the satisfaction of the weak energy condition is guaranteed by the collapsing configuration.Comment: 15 pages, 4 figures, to appear in GR

    Single-frame multiparameter platforms for seafloor geophysical and environmental observations: projects and missons from GEOSTAR to ORION

    Get PDF
    The paper presents an overview of recent seafloor long-term single-frame multiparameter platform developed in the framework of the European Commission and Italian projects starting from the GEOSTAR prototype. The main features of the different systems are described as well as the sea missions that led to their validation. The ORION seafloor observatory network recently developed, based on the GEOSTAR-type platforms and engaged in a deep-sea mission at 3300 m w.d. in the Mediterranean Sea, is also describe
    corecore