21 research outputs found

    Expression in Escherichia coli of a cloned DNA sequence encoding the pre-S2 region of hepatitis B virus

    Get PDF
    A DNA sequence encoding the entire pre-S2 region (amino acids 120-174; serotype ayw) of human hepatitis B virus envelope protein has been inserted into the lacZ gene of the plasmid pSKS105 yielding a recombinant, pWS3. Lac+ colonies of the Escherichia coli M182 (lacIOPZYA), isolated after transformation with pWS3, produced a pre-S2 peptide-Ăź-galactosidase fusion protein. This fusion protein, which comprised as much as 3% of the total bacterial protein, was purified to >90% homogeneity by affinity chromatography on p-aminophenyl-Ăź-D-thiogalactoside-Sepharose. It is immunoprecipitable with rabbit antibodies to a synthetic peptide corresponding to amino acids 120-145 of the pre-S2 region of serotype adw [pre-S(120-145)] or with antibodies to hepatitis B virus. pre-S(120-145) completely blocked the binding of either antibody to the pre-S2 peptide-Ăź-galactosidase fusion protein. These results indicate that there are antigenic determinants on the fusion protein that are closely related to, if not identical to, determinants on synthetic pre-S(120-145) and on pre-S2 sequences of native hepatitis B virus particles. Thus, bacteria transformed with pWS3 can provide an abundant source of pre-S2-Ăź-galactosidase fusion protein, which may prove useful either as a diagnostic reagent possessing marker enzyme activity suitable for ELISA tests or as an immunogen with potential to contribute to active prophylaxis of hepatitis B

    DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site

    Get PDF
    20 pages, 7 figures, 1 table.-- PMID: 19467223 [PubMed].-- PMCID: PMC2756644.-- NIHMSID: NIHMS130041.-- Printed version published Sep 15, 2009.Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this difference, we carried out a detailed comparisons of the interaction between purified DNA methyltransferases and oligodeoxyribonucleotides (ODNs) containing either 5-azacytosine or 2-(1H)-pyrimidinone in place of the cytosine targeted for methylation. When incorporated into small ODNs, the rate of C5 DNA methyltransferase inhibition by both nucleosides is essentially identical. However, the stability and reversibility of the enzyme complex in the absence and presence of cofactor differs. 5-Azacytosine ODNs form complexes with C5 DNA methyltransferases that are irreversible when the 5-azacytosine ring is intact. ODNs containing 2-(1H)-pyrimidinone at the enzymatic target site are competitive inhibitors of both prokaryotic and mammalian DNA C5 methyltransferases. We determined that the ternary complexes between the enzymes, 2-(1H)-pyrimidinone inhibitor, and the cofactor S-adenosyl methionine are maintained through the formation of a reversible covalent interaction. The differing stability and reversibility of the covalent bonds may partially account for the observed differences in cytotoxicity between zebularine and 5-azacytidine inhibitors.Partial support for this work was provided by a grant from the NIH/NCI (R21CA91315) to J.K.C. and a fellowship from the Graduate College at UNMC to D.V.B. We are grateful to S. Kumar of New England Biolabs for providing us with Eschericia coli strain ER1727 containing the pUHE25HhaI plasmid. This research was also supported in part with funds from the Intramural Research Program of the NIH, Center for Cancer Research, NCI Frederick.Peer reviewe

    DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site

    Get PDF
    20 pages, 7 figures, 1 table.-- PMID: 19467223 [PubMed].-- PMCID: PMC2756644.-- NIHMSID: NIHMS130041.-- Printed version published Sep 15, 2009.Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this difference, we carried out a detailed comparisons of the interaction between purified DNA methyltransferases and oligodeoxyribonucleotides (ODNs) containing either 5-azacytosine or 2-(1H)-pyrimidinone in place of the cytosine targeted for methylation. When incorporated into small ODNs, the rate of C5 DNA methyltransferase inhibition by both nucleosides is essentially identical. However, the stability and reversibility of the enzyme complex in the absence and presence of cofactor differs. 5-Azacytosine ODNs form complexes with C5 DNA methyltransferases that are irreversible when the 5-azacytosine ring is intact. ODNs containing 2-(1H)-pyrimidinone at the enzymatic target site are competitive inhibitors of both prokaryotic and mammalian DNA C5 methyltransferases. We determined that the ternary complexes between the enzymes, 2-(1H)-pyrimidinone inhibitor, and the cofactor S-adenosyl methionine are maintained through the formation of a reversible covalent interaction. The differing stability and reversibility of the covalent bonds may partially account for the observed differences in cytotoxicity between zebularine and 5-azacytidine inhibitors.Partial support for this work was provided by a grant from the NIH/NCI (R21CA91315) to J.K.C. and a fellowship from the Graduate College at UNMC to D.V.B. We are grateful to S. Kumar of New England Biolabs for providing us with Eschericia coli strain ER1727 containing the pUHE25HhaI plasmid. This research was also supported in part with funds from the Intramural Research Program of the NIH, Center for Cancer Research, NCI Frederick.Peer reviewe

    Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis

    Get PDF
    DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b–/– lymphomas, but not in Dnmt3b–/– pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b–/– lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies

    Potent Inhibition of HhaI DNA Methylase by the Aglycon of 2-(1H)-Pyrimidinone Riboside (Zebularine) at the GCGC Recognition Domain

    Get PDF
    A short oligodeoxynucleotide (ODN) with 2-(1H)-pyrimidinone at the HhaI DNA methyltransferase target site (GCGC) is shown to induce a level of inhibition of methyl transfer and thermal stability of the complex with the enzyme identical to that achieved with a similar ODN substituted with 5-azacytosine. The drugs responsible for these effects - zebularine and 5-azacytidine/2′-deoxy-5-azacytidine - are contrasted in terms of chemical stability and possible metabolic activation by a brief structure-activity analysis.Peer reviewe

    Inhibition of Hha I DNA (cytosine-c5) methyltransferase by oligodeoxyribonucleotides containing 5-Aza-2′-deoxycytidine: Examination of the intertwined roles of co-factor, target, transition state structure and enzyme conformation

    Get PDF
    The presence of 5-azacytosine (ZCyt) residues in DNA leads to potent inhibition of DNA (cytosine-C5) methyltranferases (C5-MTases) in vivo and in vitro. Enzymatic methylation of cytosine in mammalian DNA is an epigenetic modification that can alter gene activity and chromosomal stability, influencing both differentiation and tumorigenesis. Thus, it is important to understand the critical mechanistic determinants of ZCyt's inhibitory action. Although several DNA C5-MTases have been reported to undergo essentially irreversible binding to ZCyt in DNA, there is little agreement as to the role of AdoMet and/or methyl transfer in stabilizing enzyme interactions with ZCyt. Our results demonstrate that formation of stable complexes between Hha I methyltransferase (M.Hha I) and oligo-deoxyribonucleotides containing ZCyt at the target position for methylation (ZCyt-ODNs) occurs in both the absence and presence of co-factors, AdoMet and AdoHcy. Both binary and ternary complexes survive SDS-PAGE under reducing conditions and take on a compact conformation that increases their electrophoretic mobility in comparison to free M.Hha I. Since methyl transfer can occur only in the presence of AdoMet, these results suggest (1) that the inhibitory capacity of ZCyt in DNA is based on its ability to induce a stable, tightly closed conformation of M.Hha I that prevents DNA and co-factor release and (2) that methylation of ZCyt in DNA is not required for inhibition of M.Hha I.Partial support for this work was provided by the DAMD Breast Cancer Program (DAMD 17-98-1-8215) to JKC and fellowship support from the Graduate College at UNMC to ASB. We are also greatful to Drs. X. Cheng and S. Kumar for their generous gifts of purified M.HhaI.Peer reviewe

    Synthesis of oligonucleotide inhibitors of DNA (Cytosine-C5) methyltransferase containing 5-azacytosine residues at specific sites

    Get PDF
    The incorporation of 5-azacytosine residues into DNA causes potent inhibition of DNA (Cytosine-C5) methyltransferases. The synthesis of oligodeoxyribonucleotides incorporating single or multiple 5-aza-2′-deoxycytidine residues at precise sites was undertaken to generate an array of sequences containing the reactive 5-azacytosine base as specific target sites for enzymatic methylation. Preparation of these modified oligonucleotides requires the use of 2-(p-nitrophenyl)ethyloxycarbonyl (NPEOC) groups for the protection of exocyclic amino functions. These groups are removed under mild conditions, thus avoiding conventional protocols that are detrimental to the integrity of the 5-azacytosine ring.a European Molecular Biology Laboratory, D-69117 Heidelberg, Germany b Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 69198-4525, United States c UNMC/Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198-4525, United States d Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States e Institut de Biología Molecular de Barcelona, CSIC, Jordi Girona 18-26, E-08034 Barcelona, SpainN
    corecore