87 research outputs found

    Inhibition of adriamycin-promoted microsomal lipid peroxidation by β-carotene, α-tocopherol and retinol at high and low oxygen partial pressures

    Get PDF
    AbstractIron-dependent peroxidation of rat liver microsomes, enhanced by adriamycin, was measured in the presence of increasing concentrations of α-tocopherol, β-carotene and retinol at low and high pO2. β-Carotene and α-tocopherol inhibited lipid peroxidation by more than 60% when present at concentrations greater than 50 nmol/mg microsomal protein at both high and low pO2. Retinol inhibited peroxidation by 39% at concentrations greater than 100 nmol/mg microsomal protein. This maximal level of inhibition by retinol was unaltered by pO2. However, β-carotene was more effective than α-tocopherol or retinol at a pO2 of 4 mmHg, whereas α-tocopherol was more effective under aerobic conditions. Since adriamycin-dependent lipid peroxidation is maximal at low pO2, β-carotene may play a role in protecting against this process

    Plasma Concentrations of Myeloperoxidase Predict Mortality After Myocardial Infarction

    Get PDF
    ObjectivesThis study investigated relationships between plasma myeloperoxidase (MPO), protein oxidation markers, and clinical outcome retrospectively in patients after acute myocardial infarction (MI).BackgroundReactive oxidants are implicated in cardiovascular disease, and elevated plasma MPO is reported to predict adverse outcome in acute coronary syndromes.MethodsDetailed demographic information, radionuclide ventriculography, neurohormone measurements, and clinical history were obtained for 512 acute MI patients at hospital admission. Plasma levels of MPO and protein carbonyls were measured in patients and 156 heart-healthy control subjects. 3-Chlorotyrosine was measured in selected patients. Patient mortality was followed for 5 years.ResultsPlasma MPO and protein carbonyl concentrations were higher in MI patients 24 h to 96 h after admission than in control subjects (medians: MPO 55 ng/ml vs. 39 ng/ml, and protein carbonyls 48 pmol/mg vs. 17 pmol/mg protein, p < 0.001 for each). Both markers were significantly correlated with each other and with cardiovascular hormone levels. Chlorotyrosine was not elevated in patients with high MPO or carbonyl levels. Above-median levels of MPO but not protein carbonyls were independently predictive of mortality (odds ratio 1.8, 95% confidence interval 1.0 to 3.0, p = 0.034). Patients with above-median MPO levels in combination with above-median plasma amino-terminal pro-brain natriuretic peptide (NT-proBNP) or below-median left ventricular ejection fraction (LVEF) had significantly greater mortality compared with other patients.ConclusionsMyeloperoxidase and protein carbonyl levels are elevated in plasma after acute MI, apparently via independent mechanisms. High MPO is a risk factor for long-term mortality and adds prognostic value to LVEF and plasma NT-proBNP measurements

    Oxidation contributes to low glutathione in the airways of children with cystic fibrosis

    Get PDF
    Glutathione is an important antioxidant in the lungs but its concentration is low in the airways of patients with cystic fibrosis. Whether this deficit occurs from an early age or how oxidative stress contributes to lowering glutathione is unknown. We measured glutathione, its oxidation products, myeloperoxidase, and biomarkers of hypochlorous acid in bronchoalveolar lavage from children with cystic fibrosis and disease controls using mass spectrometry and immunological techniques. The concentration of glutathione was lower in bronchoalveolar lavage from children with cystic fibrosis, whereas glutathione sulfonamide, a specific oxidation product of hypochlorous acid, was higher. Oxidised glutathione and glutathione sulfonamide correlated with myeloperoxidase and a biomarker of hypochlorous acid. The percentage of glutathione attached to proteins was higher in children with cystic fibrosis than controls. Pulmonary infections in cystic fibrosis resulted in lower levels of glutathione but higher levels of oxidised glutathione and glutathione sulfonamide in bronchoalveolar lavage. The concentration of glutathione is low in the airways of patients with cystic fibrosis from an early age. Increased oxidation of glutathione by hypochlorous acid and its attachment to proteins contribute to this deficiency. Therapies targeted against myeloperoxidase may boost antioxidant defence and slow the onset and progression of lung disease in cystic fibrosis

    Ceruloplasmin is an endogenous inhibitor of myeloperoxidase

    Get PDF
    Myeloperoxidase is a neutrophil enzyme that promotes oxidative stress in numerous inflammatory pathologies. It uses hydrogen peroxide to catalyze the production of strong oxidants including chlorine bleach and free radicals. A physiological defense against the inappropriate action of this enzyme has yet to be identified. We found that myeloperoxidase oxidized 75% of the ascorbate in plasma from ceruloplasmin knock-out mice, but there was no significant loss in plasma from wild type animals. When myeloperoxidase was added to human plasma it became bound to other proteins and was reversibly inhibited. Ceruloplasmin was the predominant protein associated with myeloperoxidase. When the purified proteins were mixed, they became strongly but reversibly associated. Ceruloplasmin was a potent inhibitor of purified myeloperoxidase, inhibiting production of hypochlorous acid by 50% at 25 nM

    Peroxidasin protein expression and enzymatic activity in metastatic melanoma cell lines are associated with invasive potential

    Get PDF
    Peroxidasin, a heme peroxidase, has been shown to play a role in cancer progression. mRNA expression has been reported to be upregulated in metastatic melanoma cell lines and connected to the invasive phenotype, but little is known about how peroxidasin acts in cancer cells. We have analyzed peroxidasin protein expression and activity in eight metastatic melanoma cell lines using an ELISA developed with an in-house peroxidasin binding protein. RNAseq data analysis confirmed high peroxidasin mRNA expression in the five cell lines classified as invasive and low expression in the three non-invasive cell lines. Protein levels of peroxidasin were higher in the cell lines with an invasive phenotype. Active peroxidasin was secreted to the cell culture medium, where it accumulated over time, and peroxidasin protein levels in the medium were also much higher in invasive than non-invasive cell lines. The only well-established physiological role of peroxidasin is in the formation of a sulfilimine bond, which cross-links collagen IV in basement membranes via catalyzed oxidation of bromide to hypobromous acid. We found that peroxidasin secreted from melanoma cells formed sulfilimine bonds in uncross-linked collagen IV, confirming peroxidasin activity and hypobromous acid formation. Moreover, 3-bromotyrosine, a stable product of hypobromous acid reacting with tyrosine residues, was detected in invasive melanoma cells, substantiating that their expression of peroxidasin generates hypobromous acid, and showing that it does not exclusively react with collagen IV, but also with other biomolecules
    corecore