4 research outputs found

    Morphological aspect of differentiated cell.

    No full text
    <p>Optical phase contrast microscopy visualization of differentiated cells seeded on type I collagen (A, B) and polyelectrolyte multilayer films (PEMs) (C, D) until confluence under normoxic (A, C) and hypoxic (B, D) environment. Objective×20, scale bar 55 µm. The morphological examination of the confluent cells showed cobblestone shape (A, C) in normoxia and a spindle like (B, D) shape in hypoxia.</p

    Phenotype stability under hypoxia.

    No full text
    <p>After the third passage, the smooth muscle cells phenotype stability of differentiated cell cultivated under hypoxic conditions was investigated by confocal microscopy observation (A) and flow cytometry analyses (B, C). A: Confocal microscopic observations showed positive cells for contractile markers: α- Smooth Muscle Actin (α-SMA), Smooth Muscle Myosin Heavy Chain (SM-MHC) and Calponin confluence on both coated surfaces (type I collagen and Polyelectrolyte Multilayer films (PEMs)). Objective×40, NA = 0.8, scale bars 75 µm. B: Flow cytometry showed that more than 80% cells expressed SMCs markers. C: Mean fluorescence intensity analyses showed a higher SMCs contractile markers expression for differentiated cells compared to control (mature SMCs) whatever the surface coating. (§)PEMs <i>versus</i> control, (*) Collagen <i>versus</i> control, (#) PEMs <i>versus</i> collagen. (§,* and #: <i>p</i><0.05 and §§§ and ***: <i>p</i><0.001).</p

    Phenotype stability under normoxia.

    No full text
    <p>After the third passage, the smooth muscle cells phenotype stability of differentiated cell cultivated under normoxic conditions was investigated by confocal microscopy observation (A) and flow cytometry analyses (B, C). A: Microscopical observations show positive cells for contractile markers: α- Smooth Muscle Actin (α-SMA), Smooth Muscle Myosin Heavy Chain (SM-MHC) and Calponin confluence on both coated surfaces (type I collagen and Polyelectrolyte Multilayer films (PEMs)). Objective×40, NA = 0.8, scale bars 75 µm. B: Flow cytometry showed that about 90% cells expressed SMCs markers. C: Mean fluorescence intensity analyses showed a higher SMCs contractile markers expression for differentiated cells compared to control (mature SMCs) whatever the surface coating. (§) PEMs <i>versus</i> control, (*) Collagen <i>versus</i> control. (§ and *: <i>p</i><0.05, §§ and **: <i>p</i><0.01, and *** <i>p</i><0.001).</p

    Vascular cell phenotype characterization.

    No full text
    <p>The endothelial cell were characterized by the expression of specific markers: CD31 (A–D) and von Willebrand Factor (E–H) and the smooth muscle cells by the expression of contractile markers: α- Smooth Muscle Actin (α-SMA: E–H), Smooth Muscle Myosin Heavy Chain (SM-MHC: I–L) and Calponin (M–P). Images were obtained by confocal microscopy observation at cell confluence on both coated surfaces (type I collagen and Polyelectrolyte Multilayer films (PEMs)) and cultivated under normoxic and hypoxic conditions. Objective×40, NA = 0.8, scale bars 75 µm. The figure showed the positive expression of specific ECs markers for cell differentiated under normoxic environment and positive expression of specific contractile SMCs markers for cell differentiated under hypoxic environment.</p
    corecore