12 research outputs found

    SoyXpress: A database for exploring the soybean transcriptome

    Get PDF
    Abstract Background Experiments using whole transcriptome microarrays produce massive amounts of data. To gain a comprehensive understanding of this gene expression data it needs to be integrated with other available information such as gene function and metabolic pathways. Bioinformatics tools are essential to handle, organize and interpret the results. To date, no database provides whole transcriptome analysis capabilities integrated with terms describing biological functions for soybean (Glycine max (L) Merr.). To this end we have developed SoyXpress, a relational database with a suite of web interfaces to allow users to easily retrieve data and results of the microarray experiment with cross-referenced annotations of expressed sequence tags (EST) and hyperlinks to external public databases. This environment makes it possible to explore differences in gene expression, if any, between for instance transgenic and non-transgenic soybean cultivars and to interpret the results based on gene functional annotations to determine any changes that could potentially alter biological processes. Results SoyXpress is a database designed for exploring the soybean transcriptome. Currently SoyXpress houses 380,095 soybean Expressed Sequence Tags (EST), linked with metabolic pathways, Gene Ontology terms, SwissProt identifiers and Affymetrix gene expression data. Array data is presently available from an experiment profiling global gene expression of three conventional and two genetically engineered soybean cultivars. The microarray data is linked with the sequence data, for maximum knowledge extraction. SoyXpress is implemented in MySQL and uses a Perl CGI interface. Conclusion SoyXpress is designed for the purpose of exploring potential transcriptome differences in different plant genotypes, including genetically modified crops. Soybean EST sequences, microarray and pathway data as well as searchable and browsable gene ontology are integrated and presented. SoyXpress is publicly accessible at http://soyxpress.agrenv.mcgill.ca.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Granulin-epithelin precursor is an oncofetal protein defining hepatic cancer stem cells.

    Get PDF
    BACKGROUND AND AIMS: Increasing evidence has suggested that hepatocellular carcinoma (HCC) might originate from a distinct subpopulation called cancer stem cells (CSCs), which are responsible for the limited efficacy of conventional therapies. We have previously demonstrated that granulin-epithelin precursor (GEP), a pluripotent growth factor, is upregulated in HCC but not in the adjacent non-tumor, and that GEP is a potential therapeutic target for HCC. Here, we characterized its expression pattern and stem cell properties in fetal and cancerous livers. METHODS: Protein expression of GEP in fetal and adult livers was examined in human and mouse models by immunohistochemical staining and flow cytometry. Liver cancer cell lines, isolated based on their GEP and/or ATP-dependent binding cassette (ABC) drug transporter ABCB5 expression, were evaluated for hepatic CSC properties in terms of colony formation, chemoresistance and tumorigenicity. RESULTS: We demonstrated that GEP was a hepatic oncofetal protein that expressed in the fetal livers, but not in the normal adult livers. Importantly, GEP+ fetal liver cells co-expressed the embryonic stem (ES) cell-related signaling molecules including β-catenin, Oct4, Nanog, Sox2 and DLK1, and also hepatic CSC-markers CD133, EpCAM and ABCB5. Phenotypic characterization in HCC clinical specimens and cell lines revealed that GEP+ cancer cells co-expressed these stem cell markers similarly as the GEP+ fetal liver cells. Furthermore, GEP was shown to regulate the expression of ES cell-related signaling molecules β-catenin, Oct4, Nanog, and Sox2. Isolated GEP(high) cancer cells showed enhanced colony formation ability and chemoresistance when compared with the GEP(low) counterparts. Co-expression of GEP and ABCB5 better defined the CSC populations with enhanced tumorigenic ability in immunocompromised mice. CONCLUSIONS: Our findings demonstrate that GEP is a hepatic oncofetal protein regulating ES cell-related signaling molecules. Co-expression of GEP and ABCB5 further enriches a subpopulation with enhanced CSC properties. The current data provide new insight into the therapeutic strategy

    Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma.

    No full text
    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study (GWAS) followed by replication in a combined total of 10,503 PACG cases and 29,567 controls drawn from 24 countries across Asia, Australia, Europe, North America, and South America. We observed significant evidence of disease association at five new genetic loci upon meta-analysis of all patient collections. These loci are at EPDR1 rs3816415 (odds ratio (OR) = 1.24, P = 5.94 × 10(-15)), CHAT rs1258267 (OR = 1.22, P = 2.85 × 10(-16)), GLIS3 rs736893 (OR = 1.18, P = 1.43 × 10(-14)), FERMT2 rs7494379 (OR = 1.14, P = 3.43 × 10(-11)), and DPM2-FAM102A rs3739821 (OR = 1.15, P = 8.32 × 10(-12)). We also confirmed significant association at three previously described loci (P < 5 × 10(-8) for each sentinel SNP at PLEKHA7, COL11A1, and PCMTD1-ST18), providing new insights into the biology of PACG

    Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore