6 research outputs found

    Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Characterization of Athabasca Oil Sand Process-Affected Waters Incubated in the Presence of Wetland Plants

    No full text
    Naphthenic acid fraction compounds (NAFCs) are naturally present in the oil sand. These compounds become integrated into the oil sands process-affected water (OSPW) during the bitumen extraction process. NAFCs have been identified as causing toxicity in the OSPW to aquatic organisms. Water treatment technologies that are largely passive, such as constructed treatment wetlands, are a sought-after technology for the degradation of NAFCs in aquatic environments, partly because of their low energy intensity. However, it can be challenging to accurately assess the performance regarding decreased NAFC concentration and biodegradation characteristics in water samples that have been exposed to such systems. This is due to interferences of biological products such as fatty acids and humic-like materials, which may give false-positive information on NAFCs estimation with conventional analytical sample cleanup methods such as liquid–liquid extraction (LLE). It is recognized that this same issue exists when attempting to characterize NAFCs in natural wetlands for environmental monitoring purposes and, therefore, an analytical method that can remove background interferences in water samples is desirable on several fronts. Studies were thus conducted to develop and compare methods for NAFC isolation in an experimental wetland setting. A controlled greenhouse experiment was conducted with sedge (Carex aquatilis), bulrush (Schoenoplectus acutus), and cattail (Typha latifolia) grown in OSPW. Two methodsthe Isolute Biotage ENV+ SPE method and a new weak anion exchange (WAX SPE)were assessed for their ability to isolate, clean up, and concentrate NAFCs in OSPW and municipal tap water (control) that were exposed to samples of plants and associated microbes. Negative-ion-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) data revealed that WAX SPE method has better relative enhancement (5%–50%) of O<sub>2</sub> classes in OSPW exposed to wetland plants, compared to ENV+ SPE method. The WAX SPE method is a good candidate for the isolation of organic compounds in complex environmental matrices and supports the development of analytical protocols for isolation and characterization of NAFCs. Compound classes from negative-ion ESI-FT-ICR-MS data were further probed using principal component analysis (PCA) to evaluate the NAFCs that are potential indicators of efficiency of engineered wetlands for monitoring in future wetland studies. Given the PCA results, future wetland NAFC degradation investigations should target O<sub>2</sub> classes for detailed evaluation of the performance of treatment systems, or measurement of the fate and distributions of NAFCs in natural wetlands exposed to OSPW

    Improving difficult peripheral intravenous access requires thought, training and technology (DART3): A stepped-wedge, cluster randomised controlled trial protocol

    No full text
    Background: Peripheral intravenous catheters (PIVCs) are the most used invasive medical device in healthcare. Yet around half of insertion attempts are unsuccessful leading to delayed medical treatments and patient discomfort of harm. Ultrasound-guided PIVC (USGPIVC) insertion is an evidence-based intervention shown to improve insertion success especially in patients with Difficult IntraVenous Access (BMC Health Serv Res 22:220, 2022), however the implementation in some healthcare settings remains suboptimal. This study aims to co-design interventions that optimise ultrasound guided PIVC insertion in patients with DIVA, implement and evaluate these initiatives and develop scale up activities. Methods: A stepped-wedge cluster randomized controlled trial will be conducted in three hospitals (two adult, one paediatric) in Queensland, Australia. The intervention will be rolled out across 12 distinct clusters (four per hospital). Intervention development will be guided by Michie’s Behavior Change Wheel with the aim to increase local staff capability, opportunity, and motivation for appropriate, sustainable adoption of USGPIVC insertion. Eligible clusters include all wards or departments where > 10 PIVCs/week are typically inserted. All clusters will commence in the control (baseline) phase, then, one cluster per hospital will step up every two months, as feasible, to the implementation phase, where the intervention will be rolled out. Implementation strategies are tailored for each hospital by local investigators and advisory groups, through context assessments, staff surveys, and stakeholder interviews and informed by extensive consumer interviews and consultation. Outcome measures align with the RE-AIM framework including clinical-effectiveness outcomes (e.g., first-time PIVC insertion success for DIVA patients [primary outcome], number of insertion attempts); implementation outcomes (e.g., intervention fidelity, readiness assessment) and cost effectiveness outcomes. The Consolidated Framework for Implementation Research framework will be used to report the intervention as it was implemented; how people participated in and responded to the intervention; contextual influences and how the theory underpinning the intervention was realised and delivered at each site. A sustainability assessment will be undertaken at three- and six-months post intervention. Discussion: Study findings will help define systematic solutions to implement DIVA identification and escalation tools aiming to address consumer dissatisfaction with current PIVC insertion practices. Such actionable knowledge is critical for implementation of scale-up activities
    corecore