39 research outputs found

    Quantum Information at the Interface of Light with Atomic Ensembles and Micromechanical Oscillators

    Full text link
    This article reviews recent research towards a universal light-matter interface. Such an interface is an important prerequisite for long distance quantum communication, entanglement assisted sensing and measurement, as well as for scalable photonic quantum computation. We review the developments in light-matter interfaces based on room temperature atomic vapors interacting with propagating pulses via the Faraday effect. This interaction has long been used as a tool for quantum nondemolition detections of atomic spins via light. It was discovered recently that this type of light-matter interaction can actually be tuned to realize more general dynamics, enabling better performance of the light-matter interface as well as rendering tasks possible, which were before thought to be impractical. This includes the realization of improved entanglement assisted and backaction evading magnetometry approaching the Quantum Cramer-Rao limit, quantum memory for squeezed states of light and the dissipative generation of entanglement. A separate, but related, experiment on entanglement assisted cold atom clock showing the Heisenberg scaling of precision is described. We also review a possible interface between collective atomic spins with nano- or micromechanical oscillators, providing a link between atomic and solid state physics approaches towards quantum information processing

    Entanglement distillation by dissipation and continuous quantum repeaters

    Full text link
    Even though entanglement is very vulnerable to interactions with the environment, it can be created by purely dissipative processes. Yet, the attainable degree of entanglement is profoundly limited in the presence of noise sources. We show that distillation can also be realized dissipatively, such that a highly entanglement steady state is obtained. The schemes put forward here display counterintuitive phenomena, such as improved performance if noise is added to the system. We also show how dissipative distillation can be employed in a continuous quantum repeater architecture, in which the resources scale polynomially with the distance

    Quantum Teleportation of Dynamics and Effective Interactions Between Remote Systems

    Get PDF
    Most protocols for Quantum Information Processing consist of a series of quantum gates, which are applied sequentially. In contrast, interactions, for example between matter and fields, as well as measurements such as homodyne detection of light, are typically continuous in time. We show how the ability to perform quantum operations continuously and deterministically can be leveraged for inducing non-local dynamics between two separate parties. We introduce a scheme for the engineering of an interaction between two remote systems and present a protocol which induces a dynamics in one of the parties, which is controlled by the other one. Both schemes apply to continuous variable systems, run continuously in time and are based on real-time feedback

    Quantum state engineering, purification, and number resolved photon detection with high finesse optical cavities

    Full text link
    We propose and analyze a multi-functional setup consisting of high finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does not only provide the possibility to conditionally generate highly entangled photon number states as resource for quantum information protocols but also allows one to test and hence purify this type of quantum states in a communication scenario, which is of great practical importance. The scheme is especially attractive as a generalization to many modes allows for distribution and purification of entanglement in networks. In an alternative working mode, the setup allows of quantum non demolition number resolved photodetection in the optical domain.Comment: 14 pages, 10 figure

    Quantum processing photonic states in optical lattices

    Get PDF
    The mapping of photonic states to collective excitations of atomic ensembles is a powerful tool which finds a useful application in the realization of quantum memories and quantum repeaters. In this work we show that cold atoms in optical lattices can be used to perform an entangling unitary operation on the transferred atomic excitations. After the release of the quantum atomic state, our protocol results in a deterministic two qubit gate for photons. The proposed scheme is feasible with current experimental techniques and robust against the dominant sources of noise.Comment: 4 pages, 4 figure

    Dissipative versus Conditional Generation of Gaussian Entanglement and Spin Squeezing

    Full text link
    Spin squeezing of collective atomic spins can be achieved conditionally via probing with light and subsequent homodyne detection, as is done in a Quantum Nondemolition measurement. Recently it has been shown that squeezing can also be created unconditionally by a properly designed dissipative dynamics. We compare the two approaches in a Gaussian description, and optimize over all Gaussian light-matter interactions. We find that in the optimal unconditional scheme based on dissipation the level of squeezing scales as d−1/2d^{-1/2}. In contrast, the optimal conditional scheme based on measurement of light -- which in fact is not a Quantum Nondemolition measurement -- can provide squeezing which scales as d−1d^{-1} in the most relevant regime of moderate optical depths. Our results apply directly also to the creation of entanglement in the form of non-local spin squeezing of two atomic ensembles.Comment: 9 pages, 7 figure

    Neural-Shadow Quantum State Tomography

    Full text link
    Quantum state tomography (QST) is the art of reconstructing an unknown quantum state through measurements. It is a key primitive for developing quantum technologies. Neural network quantum state tomography (NNQST), which aims to reconstruct the quantum state via a neural network ansatz, is often implemented via a basis-dependent cross-entropy loss function. State-of-the-art implementations of NNQST are often restricted to characterizing a particular subclass of states, to avoid an exponential growth in the number of required measurement settings. To provide a more broadly applicable method for efficient state reconstruction, we present "neural-shadow quantum state tomography" (NSQST)-an alternative neural network-based QST protocol that uses infidelity as the loss function. The infidelity is estimated using the classical shadows of the target state. Infidelity is a natural choice for training loss, benefiting from the proven measurement sample efficiency of the classical shadow formalism. Furthermore, NSQST is robust against various types of noise without any error mitigation. We numerically demonstrate the advantage of NSQST over NNQST at learning the relative phases of three target quantum states of practical interest. NSQST greatly extends the practical reach of NNQST and provides a novel route to effective quantum state tomography

    Robust entanglement generation by reservoir engineering

    Full text link
    Following a recent proposal [C. Muschik et. al., Phys. Rev. A 83, 052312 (2011)], engineered dissipative processes have been used for the generation of stable entanglement between two macroscopic atomic ensembles at room temperature [H. Krauter et. al., Phys. Rev. Lett. 107, 080503 (2011)]. This experiment included the preparation of entangled states which are continuously available during a time interval of one hour. Here, we present additional material, further-reaching data and an extension of the theory developed in [C. Muschik et. al., Phys. Rev. A 83, 052312 (2011)]. In particular, we show how the combination of the entangling dissipative mechanism with measurements can give rise to a substantial improvement of the generated entanglement in the presence of noise.Comment: Submitted to Journal of Physics B, special issue on "Quantum Memory
    corecore