38 research outputs found

    The Influence of ENSO Flavors on Western North Pacific Tropical Cyclone Activity

    Get PDF
    El Niño–Southern Oscillation (ENSO) is a major source of seasonal western North Pacific (WNP) tropical cyclone (TC) predictability. However, the spatial characteristics of ENSO have changed in recent decades, from warming more typically in the eastern equatorial Pacific during canonical or cold tongue El Niño to warming more typically in the central equatorial Pacific during noncanonical or warm pool El Niño. We investigated the response in basinwide WNP TC activity and spatial clustering of TC tracks to the location and magnitude of El Niño using observations, TC-permitting tropical channel model simulations, and a TC track clustering methodology. We found that simulated western North Pacific TC activity, including accumulated cyclone energy (ACE) and the number of typhoons and intense typhoons, is more effectively enhanced by sea surface temperature warming of the central, compared to the eastern, equatorial Pacific. El Niño also considerably influenced simulated TC tracks regionally, with a decrease in TCs that were generated near the Asian continent and an increase in clusters that were dominated by TC genesis in the southeastern WNP. This response corresponds with the spatial pattern of reduced vertical wind shear and is most effectively driven by central Pacific SST warming. Finally, internal atmospheric variability generated a substantial range in the simulated season total ACE (±25% of the median). However, extremely active WNP seasons were linked with El Niño, rather than internal atmospheric variability, in both observations and climate model simulations

    Tropical Cyclones and Climate Change

    Get PDF
    Trabajo presentado en: 10th International Worskshop Cyclones Tropicales, celebrado del 5 al 9 de diciembre de 2022 en Bali, Indonesia.A substantial number of studies have been published since the IWTC-9 in 2018, improving our understanding of the effect of climate change on tropical cyclones (TCs) and associated hazards and risks. They reinforced the robustness of increases in TC intensity and associated TC hazards and risks due to anthropogenic climate change. New modeling and observational studies suggested the potential influence of anthropogenic climate forcings, including greenhouse gases and aerosols, on global and regional TC activity at the decadal and century time scale. However, there is still substantial uncertainty owing to model uncertainty in simulating historical TC decadal variability in the Atlantic and owing to limitations of observed TC records. The projected future change in the global number of TCs has become more uncertain since IWTC-9 due to projected increases in TC frequency by a few climate models. A new paradigm, TC seeds, has been proposed, and there is currently a debate on whether seeds can help explain the physical mechanism behind the projected changes in global TC frequency. New studies also highlighted the importance of large-scale environmental fields on TC activity, such as snow cover and air-sea interactions. Future projections on TC translation speed and Medicanes are new additional focus topics in our report. Recommendations and future research are proposed relevant to the remaining scientific questions and assisting policymakers

    Thank You to Our 2019 Peer Reviewers

    Full text link
    On behalf of the journal, AGU, and the scientific community, the editors would like to sincerely thank those who reviewed the manuscripts for Geophysical Research Letters in 2019. The hours reading and commenting on manuscripts not only improve the manuscripts but also increase the scientific rigor of future research in the field. We particularly appreciate the timely reviews in light of the demands imposed by the rapid review process at Geophysical Research Letters. With the revival of the “major revisions” decisions, we appreciate the reviewers’ efforts on multiple versions of some manuscripts. With the advent of AGU’s data policy, many reviewers have helped immensely to evaluate the accessibility and availability of data associated with the papers they have reviewed, and many have provided insightful comments that helped to improve the data presentation and quality. We greatly appreciate the assistance of the reviewers in advancing open science, which is a key objective of AGU’s data policy. Many of those listed below went beyond and reviewed three or more manuscripts for our journal, and those are indicated in italics.Key PointThe editors thank the 2019 peer reviewersPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162718/2/grl60415.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162718/1/grl60415_am.pd
    corecore