11 research outputs found

    Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation

    Get PDF
    We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation

    Differential transcriptional and protein expression of thyroid-stimulating hormone receptor in ovarian carcinomas

    No full text
    Objective: Thyroid-stimulating hormone (TSH) regulates normal thyroid function by binding to its receptor (thyroid-stimulating hormone receptor -TSHR) that is expressed at the surface of thyroid cells. Recently, it has been demonstrated that TSHR is abundantly expressed in several tissues apart from the thyroid, among them the normal ovarian surface epithelium. The role of TSHR expression outside the thyroid is not completely understood. The current study examines possible alterations of TSHR expression in ovarian carcinomas and its implication in ovarian carcinogenesis. Materials and Methods: Quantitative real-time polymerase chain reaction and immunohistochemistry analysis of TSHR expression were performed in 34 ovarian carcinoma specimens and 10 normal ovarian tissues (controls). Results: Significant reduction in TSHR messenger RNA (mRNA) expression was detected in ovarian carcinomas (mean [SD]: 0.518 [0.0934] vs normal, 49.4985 [89.1626]; P < 0.001, Mann-Whitney U test), whereas TSHR protein levels were significantly increased (percentage of positive cells: cancer, 73.55% [20.09%], vs normal, 54.54% [21.14%]; intensity: cancer, 2.52 [0.508], vs normal 1 [0]; P = 0.012, Mann-Whitney U test). No significant differences in TSHR mRNA were found according to history of thyroid disease. Conclusions: Our study describes for the first time alterations in TSHR expression both at mRNA and protein levels in ovarian carcinomas. The discrepancy between the decreased levels of the TSHR mRNA and the increased protein expression has already been described in thyroid carcinomas and might be due to alterations in its degradation by the ubiquitin system or other unknown mechanisms. Further analysis could elucidate the role of these findings in ovarian carcinogenesis

    Toll-Like receptor 4 activation promotes multiple myeloma cell growth and survival via suppression of the endoplasmic reticulum stress factor chop

    No full text
    Despite recent biomedical improvements in treating Multiple Myeloma (MM), the disease still remains incurable. Toll like receptors (TLRs) provide a link between innate and adaptive immune responses and hence potentially correlate inflammation to cancer. Although the regulatory role of TLRs in MM has been under investigation the underlying mechanisms remain unclear. In this study we assayed the function of TLR4 in MM cell lines and in MM patients’ samples. We found that lipopolysaccharide-mediated TLR4 activation increased MM cells proliferation and decreased endoplasmic reticulum (ER) stress-induced apoptosis. Furthermore, we observed that either the endogenous CHOP expression or the ER stress-mediated CHOP induction, were suppressed by TLR4 activation or its overexpression in MM cell lines; TLR4 induction also suppressed ER stress-induced apoptotic signals. In support, TLR4 gene expression silencing in MM cell lines significantly decreased cell proliferation and promoted CHOP and ATF4 upregulation. TLR4 activation was also able to partially abrogate the effect of bortezomib in MM cell lines by suppressing PERK, ATF4 and phospho-eIF2A. We suggest that TLR4-mediated disruption of ER stress responses contributes to MM cells proliferation and suppresses ER-dependent death signals. © 2019, The Author(s)

    Comparative kinetics of SARS-CoV-2 anti-spike protein RBD IgGs and neutralizing antibodies in convalescent and naive recipients of the BNT162b2 mRNA vaccine versus COVID-19 patients

    No full text
    Background: Coronavirus SARS-CoV-2, the causative agent of COVID-19, has caused a still evolving global pandemic. Given the worldwide vaccination campaign, the understanding of the vaccine-induced versus COVID-19-induced immunity will contribute to adjusting vaccine dosing strategies and speeding-up vaccination efforts. Methods: Anti-spike-RBD IgGs and neutralizing antibodies (NAbs) titers were measured in BNT162b2 mRNA vaccinated participants (n = 250); we also investigated humoral and cellular immune responses in vaccinated individuals (n = 21) of this cohort 5 months post-vaccination and assayed NAbs levels in COVID-19 hospitalized patients (n = 60) with moderate or severe disease, as well as in COVID-19 recovered patients (n = 34). Results: We found that one (boosting) dose of the BNT162b2 vaccine triggers robust immune (i.e., anti-spike-RBD IgGs and NAbs) responses in COVID-19 convalescent healthy recipients, while naive recipients require both priming and boosting shots to acquire high antibody titers. Severe COVID-19 triggers an earlier and more intense (versus moderate disease) immune response in hospitalized patients; in all cases, however, antibody titers remain at high levels in COVID-19 recovered patients. Although virus infection promotes an earlier and more intense, versus priming vaccination, immune response, boosting vaccination induces antibody titers significantly higher and likely more durable versus COVID-19. In support, high anti-spike-RBD IgGs/NAbs titers along with spike (vaccine encoded antigen) specific T cell clones were found in the serum and peripheral blood mononuclear cells, respectively, of vaccinated individuals 5 months post-vaccination. Conclusions: These findings support vaccination efficacy, also suggesting that vaccination likely offers more protection than natural infection

    Comparison of 6-month outcomes of survivors of COVID-19 versus non–COVID-19 critical illness

    No full text
    Rationale: The outcomes of survivors of critical illness due to coronavirus disease (COVID-19) compared with non–COVID-19 are yet to be established. Objectives: We aimed to investigate new disability at 6 months in mechanically ventilated patients admitted to Australian ICUs with COVID-19 compared with non–COVID-19. Methods: We included critically ill patients with COVID-19 and non–COVID-19 from two prospective observational studies. Patients were eligible if they were adult (age ⩾ 18 yr) and received ⩾24 hours of mechanical ventilation. In addition, patients with COVID-19 were eligible with a positive laboratory PCR test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Measurements and Main Results: Demographic, intervention, and hospital outcome data were obtained from electronic medical records. Survivors were contacted by telephone for functional outcomes with trained outcome assessors using the World Health Organization Disability Assessment Schedule 2.0. Between March 6, 2020, and April 21, 2021, 120 critically ill patients with COVID-19, and between August 2017 and January 2019, 199 critically ill patients without COVID-19, fulfilled the inclusion criteria. Patients with COVID-19 were older (median [interquartile range], 62 [55–71] vs. 58 [44–69] yr; P = 0.019) with a lower Acute Physiology and Chronic Health Evaluation II score (17 [13–20] vs. 19 [15–23]; P = 0.011). Although duration of ventilation was longer in patients with COVID-19 than in those without COVID-19 (12 [5–19] vs. 4.8 [2.3–8.8] d; P \u3c 0.001), 180-day mortality was similar between the groups (39/120 [32.5%] vs. 70/199 [35.2%]; P = 0.715). The incidence of death or new disability at 180 days was similar (58/93 [62.4%] vs. 99/150 [66/0%]; P = 0.583). Conclusions: At 6 months, there was no difference in new disability for patients requiring mechanical ventilation for acute respiratory failure due to COVID-19 compared with non–COVID-19
    corecore