8 research outputs found

    Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12.

    Get PDF
    IHF and HU are two heterodimeric nucleoid-associated proteins (NAP) that belong to the same protein family but interact differently with the DNA. IHF is a sequence-specific DNA-binding protein that bends the DNA by over 160Ā°. HU is the most conserved NAP, which binds non-specifically to duplex DNA with a particular preference for targeting nicked and bent DNA. Despite their importance, the in vivo interactions of the two proteins to the DNA remain to be described at a high resolution and on a genome-wide scale. Further, the effects of these proteins on gene expression on a global scale remain contentious. Finally, the contrast between the functions of the homo- and heterodimeric forms of proteins deserves the attention of further study. Here we present a genome-scale study of HU- and IHF binding to the Escherichia coli K12 chromosome using ChIP-seq. We also perform microarray analysis of gene expression in single- and double-deletion mutants of each protein to identify their regulons. The sequence-specific binding profile of IHF encompasses āˆ¼30% of all operons, though the expression of <10% of these is affected by its deletion suggesting combinatorial control or a molecular backup. The binding profile for HU is reflective of relatively non-specific binding to the chromosome, however, with a preference for A/T-rich DNA. The HU regulon comprises highly conserved genes including those that are essential and possibly supercoiling sensitive. Finally, by performing ChIP-seq experiments, where possible, of each subunit of IHF and HU in the absence of the other subunit, we define genome-wide maps of DNA binding of the proteins in their hetero- and homodimeric forms

    Cyclic-AMP and bacterial cyclic-AMP receptor proteins revisited: adaptation for different ecological niches.

    Get PDF
    Escherichia coli cyclic-AMP receptor protein (CRP) represents one of the paradigms of bacterial gene regulation. Yet despite decades of intensive study, new information continues to emerge that prompts reassessment of this classic regulatory system. Moreover, in recent years CRPs from several other bacterial species have been characterized, allowing the general applicability of the CRP paradigm to be tested. Here the properties of the E. coli, Mycobacterium tuberculosis and Pseudomonas putida CRPs are considered in the context of the ecological niches occupied by these bacteria. It appears that the cyclic-AMP-CRP regulatory system has been adapted to respond to distinct external and internal inputs across a broad sensitivity range that is, at least in part, determined by bacterial lifestyles

    The Escherichia coli MelR transcription regulator and its activation by melibiose

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mutational Analysis of the Escherichia coli melR Gene Suggests a Two-State Concerted Model To Explain Transcriptional Activation and Repression in the Melibiose Operon

    No full text
    Transcription of the Escherichia coli melAB operon is regulated by the MelR protein, an AraC family member whose activity is modulated by the binding of melibiose. In the absence of melibiose, MelR is unable to activate the melAB promoter but autoregulates its own expression by repressing the melR promoter. Melibiose triggers MelR-dependent activation of the melAB promoter and relieves MelR-dependent repression of the melR promoter. Twenty-nine single amino acid substitutions in MelR that result in partial melibiose-independent activation of the melAB promoter have been identified. Combinations of different substitutions result in almost complete melibiose-independent activation of the melAB promoter. MelR carrying each of the single substitutions is less able to repress the melR promoter, while MelR carrying some combinations of substitutions is completely unable to repress the melR promoter. These results argue that different conformational states of MelR are responsible for activation of the melAB promoter and repression of the melR promoter. Supporting evidence for this is provided by the isolation of substitutions in MelR that block melibiose-dependent activation of the melAB promoter while not changing melibiose-independent repression of the melR promoter. Additional experiments with a bacterial two-hybrid system suggest that interactions between MelR subunits differ according to the two conformational states
    corecore