34 research outputs found

    Macrophages in asthma:3 different types, 2 bad choices, 1 solution

    Get PDF

    Explaining the polarized macrophage pool during murine allergic lung inflammation

    Get PDF
    IntroductionDifferentially polarized macrophages, especially YM1+ and MHCII+ macrophages, play an important role in asthma development. The origin of these polarized macrophages has not been elucidated yet. We therefore aimed to investigate how proliferation, monocyte recruitment, and/or switching of polarization states contribute to this specific pool of polarized interstitial and alveolar macrophages during development of house dust mite (HDM)-induced allergic lung inflammation in mice.MethodsMale and female mice were first treated intranasally with PKH26 to label lung-resident macrophages and were then exposed to either HDM or phosphate-buffered saline (PBS) for two weeks. Different myeloid immune cell types were quantified in lung tissue and blood using flow cytometry.ResultsWe found that macrophage polarization only starts up in the second week of HDM exposures. Before this happened, unpolarized alveolar and interstitial macrophages transiently increased in HDM-exposed mice. This transient increase was mostly local proliferation of alveolar macrophages, while interstitial macrophages also contained unlabeled macrophages suggesting monocyte contribution. After two weeks of exposures, the number of interstitial and alveolar macrophages was similar between HDM and PBS-exposed mice, but the distribution of polarization states was remarkably different. HDM-exposed mice selectively developed YM1+ alveolar macrophages and MHCII-hi interstitial macrophages while nonpolarized macrophages were lost compared to PBS-exposed mice. DiscussionIn this HDM model we have shown that development of a polarized macrophage pool during allergic inflammation is first dependent on proliferation of nonpolarized tissue-resident macrophages with some help of infiltrating unlabeled cells, presumably circulating monocytes. These nonpolarized macrophages then acquire their polarized phenotype by upregulating YM1 on alveolar macrophages and MHCII on interstitial macrophages. This novel information will help us to better understand the role of macrophages in asthma and designing therapeutic strategies targeting macrophage functions.</p

    Dual role of YM1+ M2 macrophages in allergic lung inflammation

    Get PDF
    Abstract Alternatively activated (M2 or YM1+) macrophages have been associated with the development of asthma but their contribution to disease initiation and progression remains unclear. To assess the therapeutic potential of modulating these M2 macrophages, we have studied inhibition of M2 polarisation during and after development of allergic lung inflammation by treating with cynaropicrin, a galectin-3 pathway inhibitor. Mice that were treated with this inhibitor of M2 polarisation during induction of allergic inflammation developed less severe eosinophilic lung inflammation and less collagen deposition around airways, while the airway α-smooth muscle actin layer was unaffected. When we treated with cynaropicrin after induction of inflammation, eosinophilic lung inflammation and collagen deposition were also inhibited though to a lesser extent. Unexpectedly, both during and after induction of allergic inflammation, inhibition of M2 polarisation resulted in a shift towards neutrophilic inflammation. Moreover, airway hyperresponsiveness was worse in mice treated with cynaropicrin as compared to allergic mice without inhibitor. These results show that M2 macrophages are associated with remodeling and development of eosinophilic lung inflammation, but prevent development of neutrophilic lung inflammation and worsening of airway hyperresponsiveness. This study suggests that macrophages contribute to determining development of eosinophilic or neutrophilic lung inflammation in asthma

    Sexual maturation protects against development of lung inflammation through estrogen.

    Get PDF
    Increasing levels of estrogen and progesterone are suggested to play a role in the gender switch in asthma prevalence during puberty. We investigated whether the process of sexual maturation in mice affects the development of lung inflammation in adulthood and the contributing roles of estrogen and progesterone during this process. By inducing ovalbumin-induced lung inflammation in sexually mature and immature (ovariectomized before sexual maturation) adult mice, we showed that sexually immature adult mice developed more eosinophilic lung inflammation. This protective effect of \u22puberty\u22 appears to be dependent on estrogen, as estrogen supplementation at the time of ovariectomy protected against development of lung inflammation in adulthood whereas progesterone supplementation did not. Investigating the underlying mechanism of estrogen-mediated protection, we found that estrogen-treated mice had higher expression of the anti-inflammatory mediator secretory leukoprotease inhibitor (SLPI) and lower expression of the proasthmatic cytokine IL-33 in parenchymal lung tissue and that their expressions colocalized with type II alveolar epithelial cells (AECII). Treating AECII directly with SLPI significantly inhibited IL-33 production upon stimulation with ATP. Our data suggest that estrogen during puberty has a protective effect on asthma development, which is accompanied by induction of anti-inflammatory SLPI production and inhibition of proinflammatory IL-33 production by AECII

    Resident alveolar macrophageâ derived vesicular SOCS3 dampens allergic airway inflammation

    Full text link
    Resident alveolar macrophages (AMs) suppress allergic inflammation in murine asthma models. Previously we reported that resident AMs can blunt inflammatory signaling in alveolar epithelial cells (ECs) by transcellular delivery of suppressor of cytokine signaling 3 (SOCS3) within extracellular vesicles (EVs). Here we examined the role of vesicular SOCS3 secretion as a mechanism by which AMs restrain allergic inflammatory responses in airway ECs. Bronchoalveolar lavage fluid (BALF) levels of SOCS3 were reduced in asthmatics and in allergenâ challenged mice. Ex vivo SOCS3 secretion was reduced in AMs from challenged mice and this defect was mimicked by exposing normal AMs to cytokines associated with allergic inflammation. Both AMâ derived EVs and synthetic SOCS3 liposomes inhibited the activation of STAT3 and STAT6 as well as cytokine gene expression in ECs challenged with ILâ 4/ILâ 13 and house dust mite (HDM) extract. This suppressive effect of EVs was lost when they were obtained from AMs exposed to allergic inflammationâ associated cytokines. Finally, inflammatory cell recruitment and cytokine generation in the lungs of OVAâ challenged mice were attenuated by intrapulmonary pretreatment with SOCS3 liposomes. Overall, AM secretion of SOCS3 within EVs serves as a brake on airway EC responses during allergic inflammation, but is impaired in asthma. Synthetic liposomes encapsulating SOCS3 can rescue this defect and may serve as a framework for novel therapeutic approaches targeting airway inflammation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/1/fsb220322-sup-0001-FigS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/2/fsb220322.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/3/fsb220322_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/4/fsb220322-sup-0005-TableS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/5/fsb220322-sup-0003-FigS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/6/fsb220322-sup-0004-FigS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/7/fsb220322-sup-0002-FigS2.pd

    Neutrophilic Asthma Is Associated With Smoking, High Numbers of IRF5+, and Low Numbers of IL10+ Macrophages

    Get PDF
    Asthma is a heterogenous disease with different inflammatory subgroups that differ in disease severity. This disease variation is hampering treatment and development of new treatment strategies. Macrophages may contribute to asthma phenotypes by their ability to activate in different ways, i.e., T helper cell 1 (Th1)-associated, Th2-associated, or anti-inflammatory activation. It is currently unknown if these different types of activation correspond with specific inflammatory subgroups of asthma. We hypothesized that eosinophilic asthma would be characterized by having Th2-associated macrophages, whereas neutrophilic asthma would have Th1-associated macrophages and both having few anti-inflammatory macrophages. We quantified macrophage subsets in bronchial biopsies of asthma patients using interferon regulatory factor 5 (IRF5)/CD68 for Th1-associated macrophages, CD206/CD68 for Th2-associated macrophages and interleukin 10 (IL10)/CD68 for anti-inflammatory macrophages. Macrophage subset percentages were investigated in subgroups of asthma as defined by unsupervised clustering using neutrophil/eosinophil counts in sputum and tissue and forced expiratory volume in 1 s (FEV1). Asthma patients clustered into four subgroups: mixed-eosinophilic/neutrophilic, paucigranulocytic, neutrophilic with normal FEV1, and neutrophilic with low FEV1, the latter group consisting mainly of smokers. No differences were found for CD206+ macrophages within asthma subgroups. In contrast, IRF5+ macrophages were significantly higher and IL10+ macrophages lower in neutrophilic asthmatics with low FEV1 as compared to those with neutrophilic asthma and normal FEV1 or mixed-eosinophilic asthma. This study shows that neutrophilic asthma with low FEV1 is associated with high numbers of IRF5+, and low numbers of IL10+ macrophages, which may be the result of combined effects of smoking and having asthma.</p

    Neutrophilic Asthma Is Associated With Smoking, High Numbers of IRF5+, and Low Numbers of IL10+ Macrophages

    Get PDF
    Asthma is a heterogenous disease with different inflammatory subgroups that differ in disease severity. This disease variation is hampering treatment and development of new treatment strategies. Macrophages may contribute to asthma phenotypes by their ability to activate in different ways, i.e., T helper cell 1 (Th1)-associated, Th2-associated, or anti-inflammatory activation. It is currently unknown if these different types of activation correspond with specific inflammatory subgroups of asthma. We hypothesized that eosinophilic asthma would be characterized by having Th2-associated macrophages, whereas neutrophilic asthma would have Th1-associated macrophages and both having few anti-inflammatory macrophages. We quantified macrophage subsets in bronchial biopsies of asthma patients using interferon regulatory factor 5 (IRF5)/CD68 for Th1-associated macrophages, CD206/CD68 for Th2-associated macrophages and interleukin 10 (IL10)/CD68 for anti-inflammatory macrophages. Macrophage subset percentages were investigated in subgroups of asthma as defined by unsupervised clustering using neutrophil/eosinophil counts in sputum and tissue and forced expiratory volume in 1 s (FEV1). Asthma patients clustered into four subgroups: mixed-eosinophilic/neutrophilic, paucigranulocytic, neutrophilic with normal FEV1, and neutrophilic with low FEV1, the latter group consisting mainly of smokers. No differences were found for CD206+ macrophages within asthma subgroups. In contrast, IRF5+ macrophages were significantly higher and IL10+ macrophages lower in neutrophilic asthmatics with low FEV1 as compared to those with neutrophilic asthma and normal FEV1 or mixed-eosinophilic asthma. This study shows that neutrophilic asthma with low FEV1 is associated with high numbers of IRF5+, and low numbers of IL10+ macrophages, which may be the result of combined effects of smoking and having asthma

    Macrophages in asthma: 3 different types, 2 bad choices, 1 solution

    Get PDF
    Belangrijke, veelvoorkomende cellen in de long zijn macrofagen. Deze afweercellen hebben zeer verschillende functies in de long en er zijn drie belangrijke vormen: M1 voor het bestrijden van intracellulaire microben, M2 voor weefselherstel en M2-achtig voor het remmen van ontstekingen. Het doel van dit project was te onderzoeken welke vormen van macrofagen te vinden zijn bij astma en of en hoe ze bijdragen aan de ontwikkeling en progressie van astma. Onze studies bij astmapatiënten en in muismodellen van astma laten zien dat astma gekarakteriseerd wordt door meer M1 en M2 macrofagen en minder M2-achtige macrofagen in longweefsel dan bij gezonde controles. Onderzoek in een muismodel naar de herkomst van deze macrofagen in de longen met allergische ontsteking, leerde ons dat er nauwelijks monocyten de longen inkomen om M1 of M2 macrofaag te worden. Het zijn met name alveolaire macrofagen die zich lokaal vermeerderen en een M1 of M2 verschijningsvorm aannemen. Daarnaast wordt hun aantal aangevuld met interstitiële macrofagen die van een M2-achtige interstitiële verschijningvorm veranderen naar een M2 alveolaire verschijningsvorm. Het remmen van het ontstaan van M2 macrofagen in een muismodel voor astma remde allergische, eosinofiele ontsteking maar leidde tot meer neutrofiele ontsteking met meer M1 macrofagen en meer hyperreactiviteit. De strategie om het aantal M2-achtige macrofagen te verhogen had een beter effect, want dit leidde tot algeheel minder ontsteking in de longen. Deze informatie biedt interessante therapeutische opties die nog niet bestudeerd zijn en die nieuwe mogelijkheden kunnen bieden voor patiënten

    Macrophage Heterogeneity in Respiratory Diseases

    Get PDF
    <p>Macrophages are among the most abundant cells in the respiratory tract, and they can have strikingly different phenotypes within this environment. Our knowledge of the different phenotypes and their functions in the lung is sketchy at best, but they appear to be linked to the protection of gas exchange against microbial threats and excessive tissue responses. Phenotypical changes of macrophages within the lung are found in many respiratory diseases including asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. This paper will give an overview of what macrophage phenotypes have been described, what their known functions are, what is known about their presence in the different obstructive and restrictive respiratory diseases (asthma, COPD, pulmonary fibrosis), and how they are thought to contribute to the etiology and resolution of these diseases.</p>
    corecore