88 research outputs found

    Models of distal arthrogryposis and lethal congenital contracture syndrome

    Get PDF
    Distal arthrogryposis and lethal congenital contracture syndromes describe a broad group of disorders that share congenital limb contractures in common. While skeletal muscle sarcomeric genes comprise many of the first genes identified for Distal Arthrogyposis, other mechanisms of disease have been demonstrated, including key effects on peripheral nerve function. While Distal Arthrogryposis and Lethal Congenital Contracture Syndromes display superficial similarities in phenotype, the underlying mechanisms for these conditions are diverse but overlapping. In this review, we discuss the important insights gained into these human genetic diseases resulting from in vitro molecular studies and in vivo models in fruit fly, zebrafish, and mice

    Polygenic threshold model with sex dimorphism in adolescent idiopathic scoliosis: The Carter effect

    Get PDF
    Background: Idiopathic clubfoot is approximately twice as common in males than in females. The reason for this discrepancy is unclear butmay represent an inherent difference in the susceptibility to thedeformity. If this difference is due to genetic factors it is predicted that in order to inherit clubfoot, females need to have a greater number of susceptibility genes than males. Females would also be more likely to transmit the disease to their children and have siblings with clubfoot. This phenomenon is known as the Carter effect, and the presence of such an effect supports a multifactorial threshold model of inheritance. Methods: Ninety-seven multiplex families with more than one individual with idiopathic clubfoot were studied. The study included1093 individuals: 291with clubfoot and802unaffected relatives. Ratesof transmissionby the thirty-seven affected fathers and twenty-six affected mothers were calculated, and the prevalence among siblings was determined in the nuclear families of affected persons

    Soft-tissue abnormalities associated with treatment-resistant and treatment-responsive clubfoot: Findings of MRI analysis

    Get PDF
    BACKGROUND: Clubfoot treatment commonly fails and often results in impaired quality of life. An understanding of the soft-tissue abnormalities associated with both treatment-responsive and treatment-resistant clubfoot is important to improving the diagnosis of clubfoot, the prognosis for patients, and treatment. METHODS: Twenty patients with clubfoot treated with the Ponseti method were recruited for magnetic resonance imaging (MRI) of their lower extremities. Among these were seven patients (six unilateral cases) with treatment-responsive clubfoot and thirteen patients (five unilateral cases) with treatment-resistant clubfoot. Demographic information and physical examination findings were recorded. A descriptive analysis of the soft-tissue abnormalities was performed for both patient cohorts. For the patients with unilateral clubfoot, we calculated the percentage difference in cross-sectional area between the affected limb and the unaffected limb in terms of muscle, subcutaneous fat, intracompartment fat, and total area. With use of the Wilcoxon signed-rank test, we compared inter-leg differences in cross-sectional areas and the intracompartment adiposity index (IAI) between treatment-responsive and treatment-resistant groups. The IAI characterizes the cross-sectional area of fat within a muscle compartment. RESULTS: Extensive soft-tissue abnormalities were more present in patients with treatment-resistant clubfoot than in patients with treatment-responsive clubfoot. Treatment-resistant clubfoot abnormalities included excess epimysial fat and intramuscular fat replacement as well as unique patterns of hypoplasia in specific muscle groups that were present within a subset of patients. Among the unilateral cases, treatment-resistant clubfoot was associated with a significantly greater difference in muscle area between the affected and unaffected limb (−47.8%) compared with treatment-responsive clubfoot (−26.6%) (p = 0.02), a significantly greater difference in intracompartment fat area between the affected and unaffected limb (402.6%) compared with treatment-responsive clubfoot (9%) (p = 0.01), and a corresponding higher inter-leg IAI ratio (8.7) compared with treatment-responsive clubfoot (1.5) (p = 0.01). CONCLUSIONS: MRI demonstrated a range of soft-tissue abnormalities in patients, including unique patterns of specific muscle-compartment aplasia/hypoplasia that were present in patients with treatment-resistant clubfoot and not present in patients with treatment-responsive clubfoot. Correlations between MRI, physical examination, and treatment responsiveness may aid in the development of a prognostic classification system for clubfoot. LEVEL OF EVIDENCE: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence

    A pathogenic mechanism associated with myopathies and structural birth defects involves TPM2-directed myogenesis

    Get PDF
    Nemaline myopathy (NM) is the most common congenital myopathy, characterized by extreme weakness of the respiratory, limb, and facial muscles. Pathogenic variants in Tropomyosin 2 (TPM2), which encodes a skeletal muscle-specific actin binding protein essential for sarcomere function, cause a spectrum of musculoskeletal disorders that include NM as well as cap myopathy, congenital fiber type disproportion, and distal arthrogryposis (DA). The in vivo pathomechanisms underlying TPM2-related disorders are unknown, so we expressed a series of dominant, pathogenic TPM2 variants in Drosophila embryos and found 4 variants significantly affected muscle development and muscle function. Transient overexpression of the 4 variants also disrupted the morphogenesis of mouse myotubes in vitro and negatively affected zebrafish muscle development in vivo. We used transient overexpression assays in zebrafish to characterize 2 potentially novel TPM2 variants and 1 recurring variant that we identified in patients with DA (V129A, E139K, A155T, respectively) and found these variants caused musculoskeletal defects similar to those of known pathogenic variants. The consistency of musculoskeletal phenotypes in our assays correlated with the severity of clinical phenotypes observed in our patients with DA, suggesting disrupted myogenesis is a potentially novel pathomechanism of TPM2 disorders and that our myogenic assays can predict the clinical severity of TPM2 variants

    Common polymorphisms in human lysyl oxidase genes are not associated with the adolescent idiopathic scoliosis phenotype

    Get PDF
    BACKGROUND: Although adolescent idiopathic scoliosis affects approximately 3% of adolescents, the genetic contributions have proven difficult to identify. Work in model organisms, including zebrafish, chickens, and mice, has implicated the lysyl oxidase family of enzymes in the development of scoliosis. We hypothesized that common polymorphisms in the five human lysyl oxidase genes (LOX, LOXL1, LOXL2, LOXL3, and LOXL4) may be associated with the phenotype of adolescent idiopathic scoliosis. METHODS: This was a case-control genetic association study. A total of 112 coding and tag SNPs in LOX, LOXL1, LOXL2, LOXL3, and LOXL4 were genotyped in a discovery cohort of 138 cases and 411 controls. Genotypes were tested for association with adolescent idiopathic scoliosis by logistic regression with a two degree of freedom genotypic model and gender as a covariate. Fourteen SNPs with p < 0.1 in the discovery phase were genotyped in an independent replication cohort of 400 cases and 506 controls. RESULTS: No evidence for significant association was found between coding or tag SNPs in LOX, LOXL1, LOXL2, LOXL3, and LOXL4 and the phenotype of adolescent idiopathic scoliosis. CONCLUSIONS: Despite suggestive evidence in model organisms, common variants and known coding SNPs in the five human lysyl oxidase genes do not confer increased genotypic risk for adolescent idiopathic scoliosis. The above methodology does not address rare variants or individually private mutations in these genes, and future research may focus on this area
    • …
    corecore