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RESEARCH ARTICLE Open Access

Common polymorphisms in human lysyl oxidase
genes are not associated with the adolescent
idiopathic scoliosis phenotype
Tracy L McGregor1,2*, Christina A Gurnett3,4, Matthew B Dobbs5,6, Carol A Wise7,8,9, Jose A Morcuende10,
Thomas M Morgan1,2, Ramkumar Menon11,12 and Louis J Muglia1,2,13,14

Abstract

Background: Although adolescent idiopathic scoliosis affects approximately 3% of adolescents, the genetic
contributions have proven difficult to identify. Work in model organisms, including zebrafish, chickens, and mice,
has implicated the lysyl oxidase family of enzymes in the development of scoliosis. We hypothesized that common
polymorphisms in the five human lysyl oxidase genes (LOX, LOXL1, LOXL2, LOXL3, and LOXL4) may be associated
with the phenotype of adolescent idiopathic scoliosis.

Methods: This was a case-control genetic association study. A total of 112 coding and tag SNPs in LOX, LOXL1,
LOXL2, LOXL3, and LOXL4 were genotyped in a discovery cohort of 138 cases and 411 controls. Genotypes were
tested for association with adolescent idiopathic scoliosis by logistic regression with a two degree of freedom
genotypic model and gender as a covariate. Fourteen SNPs with p < 0.1 in the discovery phase were genotyped in
an independent replication cohort of 400 cases and 506 controls.

Results: No evidence for significant association was found between coding or tag SNPs in LOX, LOXL1, LOXL2,
LOXL3, and LOXL4 and the phenotype of adolescent idiopathic scoliosis.

Conclusions: Despite suggestive evidence in model organisms, common variants and known coding SNPs in the
five human lysyl oxidase genes do not confer increased genotypic risk for adolescent idiopathic scoliosis. The
above methodology does not address rare variants or individually private mutations in these genes, and future
research may focus on this area.

Background
Adolescent idiopathic scoliosis (AIS) affects 2-3% of the
pediatric population [1] and often requires bracing or sur-
gical treatment. AIS is currently recognized as a multifac-
torial disease with multiple influences, both environmental
and genetic [2,3]. Multiple attempts have been made to
identify the genetic etiologies of AIS with only limited suc-
cess, despite evidence for genetic contributions.
Multiple studies have made a strong case for heritability

of the incidence of AIS. A meta-analysis of 68 sets of twins
found concordance in 73% of monozygous twins and 36%
of dizygous twins [4]. A more recent study relying on self

report survey methodology confirmed the increased con-
cordance in monozygotic twin pairs (6/44) relative to dizy-
gotic pairs (0/91) [5]. The search for underlying genes has
only uncovered a few viable candidates, namely SNTG1
[6] and CHD7 [7]. Additionally, a recent genome-wide
agnostic approach put forward a promising finding in
CHL1, but the authors were unable to replicate the asso-
ciation in all independent populations [8].
The human lysyl oxidases are a family of copper-depen-

dent enzymes involved in the modeling of connective tis-
sue. These enzymes oxidize the side chain of peptidyl
lysine converting specific lysine residues to residues of
a-aminoadipic-d-semialdehyde, allowing crosslinking of
collagen and elastin. The lysyl oxidase enzymes employ a
copper ion (Cu2+) as one of the essential cofactors [9].
This family of enzymes has been proposed to play a role
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in a range of human diseases including exfoliation glau-
coma [10], myocardial fibrosis [11], intracranial aneurysms
[12] and cancer metastases [13].
Research in model organisms has linked lysyl oxidase

activity with scoliotic phenotypes. Zebrafish researchers
have shown that disrupting lysyl oxidase activity in
embryonic fish results in notochord distortion leading
to defects of the axial skeleton [14]. Work in a line of
chickens susceptible to scoliosis implicated the lysyl oxi-
dases as a causative feature [15,16], but this has not yet
been definitively shown. Recent work has investigated
the murine lysyl oxidases with bone development
[17-19], but a scoliotic phenotype has not been specifi-
cally studied in a murine model.
Specific investigations of human lysyl oxidases and sco-

liosis have been limited to hypotheses generated by find-
ings of increased copper content in hair and plasma
samples from scoliotic patients [20-22]. To our knowledge,
the relationship between adolescent idiopathic scoliosis
and variants in the lysyl oxidase family of genes has not
been investigated. This study was designed to test for asso-
ciation between common polymorphisms in the five
human lysyl oxidase genes with the phenotype of adoles-
cent idiopathic scoliosis.

Methods
Sample Size
Power calculations were performed prior to initiation of
the study with the Genetic Power Calculator [23]. As
expected, the genotypic relative risk detectable with our
estimated discovery cohort sample size of 180 cases and
360 controls varied with allele frequency over the range of
0.05 to 0.35. Our anticipated detectable difference in the
discovery cohort ranged from an odds ratio of 1.7 to 2.0.
Parameters included the 2 degree of freedom genotypic
test with alpha = 0.1 and 80% power; assumptions
included genotyping the causative SNP, a dominant model
without additive or multiplicative effects, and a population
prevalence of 3%.

Populations
Discovery Cohort
Patients with AIS collected at Washington University
School of Medicine, St. Louis Children’s Hospital, and
Shriner’s Hospital for Children in St. Louis, MO were
genotyped as cases in the discovery cohort. Inclusion cri-
teria for this cohort were spinal curvature >10 degrees on
radiograph and Caucasian ancestry. Exclusion criteria
were known or suspected associated diagnoses such as
Marfan syndrome or neuromuscular disease. Patients
provided written informed consent as part of an IRB pro-
tocol approved by Washington University School of
Medicine and Shriner’s Hospital for Children. DNA was
isolated from either lymphocytes or saliva via standard

procedures. An aliquot of each sample was then whole
genome amplified with the QIAGEN REPLI-g kit per the
manufacturer’s directions (Valencia, CA). Amplification
was confirmed by agarose gel electrophoresis (data not
shown).
The population control patients for the discovery cohort

were recruited at an ambulatory outpatient clinical labora-
tory in Kansas City, MO as previously described [24].
Patients provided written informed consent as part of an
IRB protocol approved by Saint Luke’s Hospital of Kansas
City. Scoliosis status was not assessed clinically or radio-
graphically. Ancestry and gender information was obtained
by self-report. Only participants identified as Caucasian
were included in this study, and controls were frequency
matched for gender. DNA was previously extracted from
lymphocytes by standard procedures and whole genome
amplified via QIAGEN REPLI-g per the manufacturer’s
directions (Valencia, CA).
Replication Cohort
A portion of the replication cohort cases (n = 130) were
recruited at the University of Iowa. Inclusion criteria were
Cobb angle of at least 10 degrees with pedicle rotation by
radiograph and Caucasian ancestry. Exclusion criteria
were evidence of neuromuscular or congenital scoliosis, or
other recognizable syndromes involving scoliosis. The
remainder of the cases in the replication cohort (n = 270)
were collected at Texas Scottish Rite Hospital in Dallas,
TX. Inclusion criteria were scoliosis of at least 15 degrees
by radiograph and Caucasian ancestry. Exclusion criteria
were neuromuscular, congenital, or syndromic scoliosis, or
family history of the same. In both populations, genomic
DNA was isolated from whole blood or saliva by standard
procedures and resuspended in water. All patients pro-
vided written informed consent as part of IRB protocols
approved by the University of Iowa and University of
Texas Southwestern Medical Center and Texas Scottish
Rite Hospital.
Population control patients were obtained from

patients recruited in a clinical laboratory in Kansas City,
MO, as described above, without overlap of individuals
between cohorts. Women recruited by the Perinatal
Research Center in Nashville, TN also served as controls.
These participants provided written informed consent as
part of a protocol approved by TriStar Nashville IRB,
Nashville, TN and Western IRB, Seattle, WA. Scoliosis
status was not assessed clinically or radiographically.
Inclusion criterion was Caucasian ancestry, obtained by
self report. The gender ratio of controls was again fre-
quency matched to that of the cases in the replication
cohort.
A summary of the populations is given in Table 1.

The ages of the controls are more advanced than those
of cases, indicating that they were beyond the age of
developing the AIS phenotype. We maintained the
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assumption of 3% prevalence of AIS in the control
populations, as we would not expect AIS to increase the
chances of inclusion in the control populations.

SNP Selection
All SNPs from the lysyl oxidase genes denoted as coding
in dbSNP build 129 [25] were candidates for genotyping
regardless of the minor allele frequency. HapMap data
[26] from the CEU population was analyzed into the
Haploview (version 2) program [27] for 100 kb upstream
and downstream of the five genes studied, LOX, LOXL1,
LOXL2, LOXL3 and LOXL4. The Tagger algorithm [28]
selected tag SNPs with the following parameters: pairwise
tagging only; r2 threshold 0.8; MAF cutoff 0.1; Design
score 1. The lists of coding SNPs were marked as
included SNPs in the Tagger algorithm and no SNPs
were excluded a priori. This resulting list was submitted
to the Vanderbilt DNA Resources Core for genotyping
on the Sequenom MassARRAY system (San Diego, CA).
After assay design with proprietary Sequenom software,
those tag SNPs which failed probe design or did not pool
with other markers were added to the excluded SNPs list,
and iterations performed until all regions were tagged.
SNPs that associated with AIS after controlling for gen-
der with p < 0.1 prior to multiple test correction were
carried forward to replication genotyping.

Genotyping
The Vanderbilt DNA Resources Core performed the geno-
typing with the use of the Sequenom MassARRAY system
(San Diego, CA). This technology is based on a single-base
primer extension reaction coupled with mass spectrome-
try. Quality-control procedures included examination of
marker and sample genotyping efficiency, allele frequency
calculations, accuracy of known HapMap samples, and
testing of Hardy-Weinberg equilibrium.

Analysis
Genetic analyses including Hardy Weinberg equilibrium
testing, allele frequency, logistic regression, and allele
association were performed with gPLINK v2.050 [29,30].
SNPs with total genotyping efficiency of <85% were
excluded from further analysis. Individual samples with

genotyping efficiency of <70% were also excluded. Allele
frequencies were calculated in both cases and controls,
and were analyzed for differences between cohorts. Gen-
otype results were tested for deviation from Hardy-
Weinberg equilibrium in control samples.
Genotypes in both cohorts were analyzed by multivariate

logistic regression with gender as a covariate and case/
control status as the outcome. The analyses did not
assume a prespecified genetic model and was conducted
with a genotypic model requiring two degrees of freedom.
In the discovery cohort, the SNPs with p-values <0.1 for
the overall model prior to multiple test correction were
carried forward for genotyping in the replication cohort.
In the replication cohort, stratified analyses were con-
ducted to ensure that the origin of the samples or gender
of the subject did not act as a confounder or effect modi-
fier. As a secondary analysis, the results of an allele asso-
ciation test requiring only 1 degree of freedom was
performed.

Results
For initial SNP selection, the Tagger algorithm initially
identified a total of 132 candidate coding and tag SNPs.
After reiterations to accommodate the Sequenom Geno-
typing platform, final selection included 112 SNPs. These
were genotyped in 138 case and 411 control samples
(Additional File 1). Of these, 9 SNPs and 15 samples (8
cases and 7 controls) failed genotyping and were excluded
from further analyses. A total of 16 SNPs in LOXL1,
LOXL2, and LOXL4 (Table 2) showed a difference by gen-
otype with an uncorrected adjusted p < 0.1. These SNPs
were carried forward for genotyping in the replication
population.
Of the 16 SNPs carried forward to the replication samples,
rs751160 (LOXL4) and rs12442211 (LOXL1) were not suc-
cessfully genotyped. In the cohort of 400 cases and 506
controls, 17 samples (7 cases and 10 controls) failed geno-
typing. A total of 14 SNPs were analyzed within the repli-
cation cohort using the same two degree of freedom
genotypic model with multivariate logistic regression,
adjusting for gender. The minor allele frequencies were
consistent between populations (Figure 1). No SNPs
showed a difference by genotype between cases and

Table 1 Description of populations genotyped in discovery and replication phases

Collection site N Cohort Minimum curvature Percent female Average Age (y)

St. Louis, MO 138 Discovery 10 degrees 85.5 16.9 ± 6.2

Kansas City, MO 411 Discovery Population Control 85.0 61.5 ± 12.7

Dallas, TX 270 Replication 15 degrees 87.0 14.6 ± 2.4

Iowa City, IA 130 Replication 10 degrees 84.5 22.9 ± 15.7

Kansas City, MO 179 Replication Population Control 68.7 61.2 ± 12.6

Nashville, TN 327 Replication Population Control 100.0 28.5 ± 5.8

The geographic location where each cohort was enrolled as well as details about the populations are presented.

McGregor et al. BMC Medical Genetics 2011, 12:92
http://www.biomedcentral.com/1471-2350/12/92

Page 3 of 7



controls with p < 0.004 (Table 3). Because the cases in the
replication cohort were obtained from two different
recruiting centers, the analysis was stratified by recruiting
center to assess for confounding. No SNP attained signifi-
cance in a single cohort that was masked by combining
the analysis. In addition, the analysis was stratified by gen-
der to determine if gender was acting as an effect modifier.
No significant associations or evidence for effect modifica-
tion were detected.
A secondary analysis of traditional allele association

was performed for the SNPs genotyped in the replica-
tion cohort. The results indicate that no SNPs were sig-
nificantly correlated after accounting for multiple
testing.

Retrospective power calculations with performed with
measured allele frequencies. Our discovery cohort of 138
cases and 411 controls had allele frequencies ranging
from 0.06 - 0.49. We had 80% power to detect minimum
odds ratios in the range of 1.7 - 2.1 using a 2 degree of
freedom genotypic test with alpha = 0.1 (cutoff for inclu-
sion in replication set). Assumptions included genotyping
of the causative SNP, a dominant model without additive
or multiplicative effects, and a population prevalence of
3%. In the replication cohort of 400 cases and 506 con-
trols, the measured allele frequencies ranged from 0.13 -
0.46. This allowed for 80% power to detect minimum
odds ratios in the range of 1.5 - 1.6 with the same para-
meters. The detection limit increased to 2.6 - 3.6 with a

Table 2 SNPs genotyped in discovery cases and controls with p <0.1

Gene SNP Minor allele
and strand

Logistic regression
adjusted p value

Genotypic association OR (95% CI)
Heterozygous (Het) Homozygous minor

(HM)

Genotype Frequencies minor/het/
major Cases (Ca) Pop. Controls (PC)

LOXL1 rs12442211 G/- 0.066 Het: 0.60 (0.37 - 0.95) Ca: 27/54/47

HM: 0.60 (0.34 - 1.04) PC: 100/198/101

LOXL1 rs2304719 T/- 0.063 Het: 0.61 (0.39 - 0.96) Ca: 17/39/69

HM: 1.12 (0.59 - 2.14) PC: 40/171/189

LOXL1 rs4461027 C/- 0.058 Het: 0.59 (0.38 - 0.91) Ca: 23/46/62

HM: 0.72 (0.41 - 1.26) PC: 71/186/142

LOXL1 rs4886782 A/- 0.031 Het: 0.56 (0.36 - 0.86) Ca: 18/43/69

HM: 0.86 (0.46 - 1.58) PC: 51/186/161

LOXL2 rs1002791 C/+ 0.039 Het: 0.58 (0.38 - 0.90) Ca: 6/39/82

HM: 0.58 (0.23 - 1.47) PC: 26/166/208

LOXL2 rs17760913 T/- 0.055 Het: 0.66 (0.42 - 1.04) Ca: 12/34/86

HM: 1.62 (0.76 - 3.46) PC: 21/142/227

LOXL2 rs17760943 A/- 0.072 Het: 0.77 (0.49 - 1.19) Ca: 16/39/76

HM: 1.75 (0.89 - 3.44) PC: 28/150/222

LOXL2 rs2294125 G/+ 0.10 Het: 0.67 (0.41 - 1.08) Ca: 36/52/41

HM: 1.09 (0.64 - 1.85) PC: 88/201/107

LOXL2 rs3808522 G/- 0.0046 Het: 0.48 (0.28 - 0.82) Ca: 37/30/46

HM: 1.15 (0.68 - 1.94) PC: 80/150/111

LOXL2 rs3808536 C/+ 0.0059 Het: 0.69 (0.42 - 1.11) Ca: 40/47/40

HM: 1.57 (0.92 - 2.68) PC: 73/200/119

LOXL2 rs6985160 T/- 0.035 Het: 0.59 (0.38 - 0.90) Ca: 14/47/68

HM: 0.59 (0.30 - 1.13) PC: 55/185/155

LOXL2 rs6999447 T/- 0.027 Het: 0.86 (0.55 - 1.35) Ca: 29/50/53

HM: 1.85 (1.06 - 3.24) PC: 48/182/170

LOXL4 rs11189510 A/+ 0.00045 Het: 2.30 (1.45 - 3.66) Ca: 5/39/87

HM: 3.84 (1.09-13.58) PC: 6/68/325

LOXL4 rs11189513 G/- 0.036 Het: 1.23 (0.81 - 1.87) Ca: 9/60/60

HM: 0.45 (0.21 - 0.97) PC: 63/151/183

LOXL4 rs11599085 C/+ 0.067 Het: 1.69 (1.09 - 2.64) Ca: 17/76/39

HM: 1.39 (0.72 - 2.66) PC: 53/185/164

LOXL4 rs751160 G/- 0.093 Het: 0.69 (0.44 - 1.07) Ca: 22/48/59

HM: 1.26 (0.69 - 2.30) PC: 47/190/157

The SNPs genotyped in the discovery phase (138 cases and 411 controls) with overall p <0.1 are represented. The minor allele and strand are represented to
allow for comparisons between studies. The p-value displayed indicates the significance of the overall model and is adjusted for gender. The odds ratios use the
homozygous major allele genotype as the reference genotype and genotype counts are presented for each group.
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Figure 1 Minor allele frequency comparison between populations. The minor allele frequencies of the SNPs successfully genotyped in the
replication phase are represented. The minor allele frequency did not differ significantly between the six populations as assessed by chi squared
analysis.

Table 3 Significance and odds ratios of SNPs genotyped in the replication phase

Gene SNP Minor allele
and strand

Logistic regression
adjusted p value

Genotypic association OR (95% CI)
Heterozygous (Het) Homozygous minor

(HM)

Genotype Frequencies minor/het/
major Cases (Ca) Pop. Controls (PC)

LOXL1 rs2304719 T/- 0.2 Het: 1.19 (0.90 - 1.57) Ca: 36/172/184

HM: 1.51 (0.91 - 2.52) PC: 33/202/255

LOXL1 rs4461027 C/- 0.19 Het: 1.01 (0.76 - 1.36) Ca: 55/190/148

HM: 0.72 (0.48 - 1.07) PC: 91/224/177

LOXL1 rs4886782 A/- 0.033 Het: 0.84 (0.63 - 1.11) Ca: 38/169/186

HM: 0.56 (0.36 - 0.87) PC: 74/219/202

LOXL2 rs1002791 C/+ 0.61 Het: 1.05 (0.79 - 1.38) Ca: 31/155/207

HM: 1.31 (0.77 - 2.22) PC: 31/192/268

LOXL2 rs17760913 T/- 0.94 Het: 1.04 (0.78 - 1.38) Ca: 25/148/217

HM: 1.09 (0.62 - 1.91) PC: 35/189/266

LOXL2 rs17760943 A/- 0.86 Het: 0.96 (0.72 - 1.27) Ca: 25/139/229

HM: 0.87 (0.50 - 1.49) PC: 29/171/293

LOXL2 rs2294125 G/+ 0.43 Het: 1.01 (0.74 - 1.37) Ca: 87/196/109

HM: 1.25 (0.85 - 1.83) PC: 93/258/144

LOXL2 rs3808522 G/- 0.54 Het: 0.85 (0.63 - 1.16) Ca: 88/176/129

HM: 0.97 (0.67 - 1.41) PC: 105/240/151

LOXL2 rs3808536 C/+ 0.92 Het: 1.01 (0.74 - 1.37) Ca: 82/188/123

HM: 1.08 (0.74 - 1.57) PC: 98/239/157

LOXL2 rs6985160 T/- 0.16 Het: 0.77 (0.58 - 1.02) Ca: 50/165/178

HM: 1.00 (0.65 - 1.55) PC: 56/239/200

LOXL2 rs6999447 T/- 0.31 Het: 1.25 (0.93 - 1.66) Ca: 54/184/155

HM: 1.06 (0.71 - 1.60) PC: 71/206/217

LOXL4 rs11189510 A/+ 0.46 Het: 1.21 (0.88 - 1.65) Ca: 6/100/287

HM: 1.34 (0.43 - 4.20) PC: 6/109/381

LOXL4 rs11189513 G/- 0.65 Het: 0.91 (0.69 - 1.21) Ca: 37/162/194

HM: 0.82 (0.52 - 1.31) PC: 53/210/229

LOXL4 rs11599085 C/+ 0.08 Het: 0.74 (0.55 - 0.99) Ca: 54/160/178

HM: 0.72 (0.48 - 1.08) PC: 79/227/186

Adjusted p-value includes gender as a covariate. Because there were 14 SNPs assessed in this step, a Bonferroni correction would lead to significance with p <
0.004. The p-value displayed indicates the significance of the overall model and is adjusted for gender. The odds ratios use the homozygous major allele
genotype as the reference genotype and genotype counts are presented for each group.
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Bonferroni correction and alpha = 0.00357. Note the low-
est minor allele frequency measured in the discovery
cohort was 0.06, with minimum detectable odds ratio of
2.0. No SNPs carried forward in the replication set had a
measured allele frequency of less than 0.13, indicating
that rare polymorphisms were not fully assessed in this
study.
Additional polymorphisms are added to public data-

bases such as dbSNP with each build. To assess for the
extent of coverage, the successfully genotyped SNPs
were tested as proxy markers for all SNPs with allele
frequency > 0.1 within 100 kb of each lysyl oxidase gene
included in the 1000 Genomes pilot data release. We
achieved an average r2 of 0.76 over 131 SNPs in LOX,
0.68 over 404 SNPs in LOXL1, 0.60 over 741 SNPs in
LOXL2, 0.36 over 224 SNPs in LOXL3, and 0.64 over
344 SNPs in LOXL4.

Discussion
Although work in model organisms suggests a role for
lysyl oxidases in scoliosis, common variants in the five
human lysyl oxidase genes did not show significant asso-
ciation with the adolescent idiopathic phenotype.
These negative results do not provide support for the

underlying hypothesis that lysyl oxidases are involved in
the development of adolescent idiopathic scoliosis. The
mechanisms by which lysyl oxidase enzymes putatively
influence scoliosis in experimental models show effect
modification, specifically with copper exposure. Prior work
demonstrated that some mutations in a zebrafish model
did not overtly cause the abnormal phenotype, but instead
allowed the expression of the phenotype at previously sub-
clinical levels of copper deprivation [14]. Likewise, the
incidence and severity of scoliosis in the genetically predis-
posed chickens were sensitive to dietary copper [15,16].
Measures of copper intake or homeostasis were not avail-
able in this population.
The inherent limitations of this study must be acknowl-

edged. Although we studied a large combined cohort of
patients with AIS, this study was not powered to detect
small risks. We recognize that in addition to sample size,
the minor allele frequency of a particular polymorphism
and the linkage disequilibrium between the putative causa-
tive variant and the genotyped SNP are the primary driv-
ing forces behind the detectable genotype relative risk. In
addition, the analysis was performed without predefining a
specific model such as additive or multiplicative. We
selected a genotypic model which uses two degrees of free-
dom, resulting in lower power because it allows for the
genotypes to have a relationship other than additive or
multiplicative. The use of an unscreened control popula-
tion with an assumed AIS prevalence of 3% also decreased
the effective power of this study, and had the potential to
lead to misclassification bias.

Only tag SNPs with a minor allele frequency above 0.10
and previously described coding SNPs were included in
this analysis. As a result, only variants which are relatively
common in the population were evaluated. The post hoc
evaluation of coverage indicates that additional common
polymorphisms in these genes were not well captured in
this study. Since newly reported variants were not all suffi-
ciently tagged, this study does not address their potential
to have association with AIS. Additionally, a phenotype
with complex inheritance such as adolescent idiopathic
scoliosis may be due relatively rare, but more penetrant,
variants and these were not examined in this study.

Conclusions
Common polymorphisms in the lysyl oxidase family of
genes were not found to associate with the phenotype of
adolescent idiopathic scoliosis. These results suggest
future research in a number of different directions. The
lysyl oxidase genes could be examined in other idiopathic
scoliotic phenotypes. Adolescent idiopathic scoliosis has
onset with puberty, but the lysyl oxidases may impact
spinal development during earlier windows resulting in
congenital scoliosis or juvenile scoliosis. Alternatively, ado-
lescent idiopathic scoliosis may be the appropriate pheno-
type, but the impact is mediated through individually rare
mutations that have a large impact on the overall pheno-
type in a subset of patients. Further study of rare variants
would necessitate sequencing individuals with adolescent
idiopathic scoliosis for variants in at least exonic regions, a
timely and more costly approach.

Additional material

Additional file 1: Genotyped SNPs in the discovery phase with
resulting p-values and odds ratios Excel spreadsheet of all SNPs (N =
112) submitted for genotyping in the discovery phase (138 case and 411
control samples). The indicated p-value resulted from a logistic
regression genotypic model controlling for gender. The odds ratios for
each SNP are given in reference to the homozygous major allele
genotype.
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