24 research outputs found

    Early chronic low-level lead exposure produces glomerular hypertrophy in young C57BL/6J mice

    Get PDF
    Early chronic lead exposure continues to pose serious health risks for children, particularly those living in lower socioeconomic environments. This study examined effects on developing glomeruli in young C57BL/6J mice exposed to low (30 ppm), higher (330 ppm) or no lead via dams’ drinking water from birth to sacrifice on post-natal day 28. Low-level lead exposed mice [BLL mean (SD); 3.19 (0.70) μg/dL] had an increase in glomerular volume but no change in podocyte number compared to control mice [0.03 (0.01) μg/dL]. Higher-level lead exposed mice [14.68 (2.74) μg/dL] had no change in either glomerular volume or podocyte number. The increase in glomerular volume was explained by increases in glomerular capillary and mesangial volumes with no change in podocyte volume. Early chronic lead exposure yielding very low blood lead levels alters glomerular development in pre-adolescent animals

    Statistical modeling with litter as a random effect in mixed models to manage “intralitter likeness”

    No full text
    © 2020 Elsevier Inc. “Intralitter likeness,” the possibility that the shared genetics and/or maternal environment in multiparous species causes strong similarity for outcome variables in littermates, violates a core statistical assumption, that of observation independence, when littermate outcomes are analyzed. Intralitter likeness has been of major concern to investigators for several decades. Despite consensus and guidance, many research reports in the rodent literature continue to ignore intralitter likeness. A historical review of the literature revealed that the long-preferred solution was to include litter as an effect in statistical models. Limitations in software development and computing capacity prior to 1990, however, appear to have led researchers and guidance authorities to endorse instead the method of using one value per litter. Here, the history of discussions regarding intralitter likeness in developmental neurotoxicological research is reviewed; growing knowledge regarding the biological bases and significance of intralitter likeness is discussed; principles underlying the use of litter as a random effect in mixed models are presented; statistical examples are provided illustrating the advantages and critical importance of including litter as a random effect in mixed models; and results using all data points (all pups from all litters) with litter as a random effect, are compared to results based on random selections of representative littermates. Mixed models with litter included as a random effect have distinct advantages for the analysis of clustered data. Modern computing capacity provides ready accessibility to mixed models for all researchers. Accessibility however does not preclude the need for appropriate expertise and consultation in the use of mixed (hierarchical) models

    Early chronic lead exposure reduces exploratory activity in young C57BL/6J mice

    No full text
    Research has suggested that chronic low‐level lead exposure diminishes neurocognitive function in children. Tests that are sensitive to behavioral effects at lowest levels of lead exposure are needed for the development of animal models. In this study we investigated the effects of chronic low‐level lead exposure on exploratory activity (unbaited nose poke task), exploratory ambulation (open field task) and motor coordination (Rotarod task) in pre‐adolescent mice. C57BL/6J pups were exposed to 0 ppm (controls), 30 ppm (low‐dose) or 230 ppm (high‐dose) lead acetate via dams’ drinking water administered from birth to postnatal day 28, to achieve a range of blood lead levels (BLLs) from not detectable to 14.84 µg dl–1). At postnatal day 28, mice completed behavioral testing and were killed (n = 61). BLLs were determined by inductively coupled plasma mass spectrometry. The effects of lead exposure on behavior were tested using generalized linear mixed model analyses with BLL, sex and the interaction as fixed effects, and litter as the random effect. BLL predicted decreased exploratory activity and no threshold of effect was apparent. As BLL increased, nose pokes decreased. The C57BL/6J mouse is a useful model for examining effects of early chronic low‐level lead exposure on behavior. In the C57BL/6J mouse, the unbaited nose poke task is sensitive to the effects of early chronic low‐level lead exposure. This is the first animal study to show behavioral effects in pre‐adolescent lead‐exposed mice with BLL below 5 µg dl–1. Copyright © 2014 John Wiley & Sons, Ltd

    Polymorphisms of delta-aminolevulinic acid dehydratase (ALAD) and peptide tansporter 2 (PEPT2) genes in children with low- level lead exposure

    No full text
    Low-level lead exposure during early childhood has long been associated with altered neurocognitive development and diminished cognitive functions. Over nine thousand U.S. industrial facilities annually emit significant amounts of lead, creating exposure risk particularly for minority children. The mechanisms by which low-level lead exerts neurotoxic effects are poorly understood. Once absorbed, the only intervention is source removal, thus primary prevention is key. Genetic biomarkers could provide an efficient means of identifying children at greatest risk. Common functional variants of genes that alter lead\u27s neurotoxic potential have been identified and include delta-aminolevulinic acid dehydratase (ALAD(2)) and peptide transporter 2 (PEPT2*2). These polymorphisms have not been examined previously in Hispanic minority samples, or with regard to lowest level lead exposure. In 116 children of Mexican-American/Hispanic descent residing in zip codes previously designated as high risk for lead exposure (mean age=8.1, S.D.=1.9), blood lead level was measured at three time points over a 3-month period and averaged. DNA extraction was completed using buccal swab samples. The frequencies of the ALAD(2) and PEPT2*2 polymorphisms observed in this sample closely approximated those previously reported for Anglo, European and Asian samples. As compared to children heterozygous for the PEPT2*2 polymorphism, and without the PEPT2*2 polymorphism, the geometric mean blood lead level of children homozygous for the PEPT2*2 polymorphism was significantly higher. In contrast to past studies, mean blood lead level of children heterozygous and homozygous for the ALAD2 polymorphism in this sample did not differ from that of children without the ALAD2 polymorphism. Higher blood lead burden in children with the PEPT2*2 mutation may suggest that this common genetic variant is a biomarker of increased vulnerability to the neurotoxic effects of lowest level lead exposure

    δ-Aminolevulinic acid dehydratase single nucleotide polymorphism 2 and peptide transporter 2*2 haplotype may differentially mediate lead exposure in male children

    No full text
    Child low-level lead (Pb) exposure is an unresolved public health problem and an unaddressed child health disparity. Particularly in cases of low-level exposure, source removal can be impossible to accomplish, and the only practical strategy for reducing risk may be primary prevention. Genetic biomarkers of increased neurotoxic risk could help to identify small subgroups of children for early intervention. Previous studies have suggested that, by way of a distinct mechanism, δ-aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD2) and/or peptide transporter 2*2 haplotype (hPEPT2*2) increase Pb blood burden in children. Studies have not yet examined whether sex mediates the effects of genotype on blood Pb burden. Also, previous studies have not included blood iron (Fe) level in their analyses. Blood and cheek cell samples were obtained from 306 minority children, ages 5.1 to 12.9 years. 208Pb and 56Fe levels were determined with inductively coupled plasma–mass spectrometry. General linear model analyses were used to examine differences in Pb blood burden by genotype and sex while controlling for blood Fe level. The sample geometric mean Pb level was 2.75 μg/dl. Pb blood burden was differentially higher in ALAD2 heterozygous boys and hPEPT2*2 homozygous boys. These results suggest that the effect of ALAD2 and hPEPT2*2 on Pb blood burden may be sexually dimorphic. ALAD2 and hPEPT2*2 may be novel biomarkers of health and mental health risks in male children exposed to low levels of Pb

    δ-Aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD2) and peptide transporter 2*2 haplotype (hPEPT2*2) differently influence neurobehavior in low-level lead exposed children

    No full text
    Delta-aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD2) and peptide transporter haplotype 2*2 (hPEPT2*2) through different pathways can increase brain levels of delta-aminolevulinic acid and are associated with higher blood lead burden in young children. Past child and adult findings regarding ALAD2 and neurobehavior have been inconsistent, and the possible association of hPEPT2*2 and neurobehavior has not yet been examined. Mean blood lead level (BLL), genotype, and neurobehavioral function (fine motor dexterity, working memory, visual attention and short-term memory) were assessed in 206 males and 215 females ages 5.1–11.8 years. Ninety-six percent of children had BLLs \u3c 5.0 μg/dl. After adjusting for covariates (sex, age and mother\u27s level of education) and sibling exclusion (N = 252), generalized linear mixed model analyses showed opposite effects for the ALAD2 and hPEPT2*2 genetic variants. Significant effects for ALAD2 were observed only as interactions with BLL and the results suggested that ALAD2 was neuroprotective. As BLL increased, ALAD2 was associated with enhanced visual attention and enhanced working memory (fewer commission errors). Independent of BLL, hPEPT2*2 predicted poorer motor dexterity and poorer working memory (more commission errors). BLL alone predicted poorer working memory from increased omission errors. The findings provided further substantiation that (independent of the genetic variants examined) lowest-level lead exposure disrupted early neurobehavioral function, and suggested that common genetic variants alter the neurotoxic potential of low-level lead. ALAD2and hPEPT2*2 may be valuable markers of risk, and indicate novel mechanisms of lead-induced neurotoxicity. Longitudinal studies are needed to examine long-term influences of these genetic variants on neurobehavior
    corecore