83 research outputs found

    Isotope effect in total muon capture rates on nuclei and isotensor effective potential

    Get PDF
    Isotope effects are considered in the framework of the energy-weighted sum rule treatment of muon capture on nuclei. The possibility of exploiting total capture rates to convey information on nuclear structure is pointed out

    Meson-induced correlations of nucleons in nuclear Compton scattering

    Get PDF
    The non-resonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is dicussed. We found that different form factors appear for the static part (proportional to the enhancement constant Îș\kappa ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities.Comment: 15 pages, Latex, epsf.sty, 9 eps figures

    Observation of double radiative capture on pionic hydrogen

    Full text link
    We report the first observation of double radiative capture on pionic hydrogen. The experiment was conducted at the TRIUMF cyclotron using the RMC spectrometer, and detected Îł\gamma--ray coincidences following π−\pi^- stops in liquid hydrogen. We found the branching ratio for double radiative capture to be (3.05±0.27(stat.)±0.31(syst.))×10−5(3.05 \pm 0.27(stat.) \pm 0.31(syst.)) \times 10^{-5}. The measured branching ratio and angle-energy distributions support the theoretical prediction of a dominant contribution from the Ï€Ï€â†’ÎłÎł\pi \pi \to \gamma \gamma annihilation mechanism.Comment: 4 Pages, 4 Figures. accepted for publication in Phys. Rev. Let

    Speakable and unspeakable in cosmology: dark matter vs. gravitational self energies. Hubble's constant, the cosmological term and all that

    Full text link
    The inadequacy of the present cosmological picture is underlined. The central issue of energy and particles-photons number conservation is addressed. It is shown that consideration of gravitational self energy is paramount both for matter and for radiation to bring present data estimates of matter and radiation density and the radius of the universe towards agreement with the Planck scale quantities from which it should have consistently evolved. Particle creation is proven to play a fundamental role in the evolution of the Universe. It is argued that we might be living inside an expanding black hole

    Quasifree Pion Electroproduction from Nuclei in the Δ\Delta Region

    Full text link
    We present calculations of the reaction A(e,eâ€ČπN)BA(e,e^\prime \pi N)B in the distorted wave impulse approximation. The reaction allows for the study of the production process in the nuclear medium without being obscured by the details of nuclear transition densities. First, a pion electroproduction operator suitable for nuclear calculations is obtained by extending the Blomqvist-Laget photoproduction operator to the virtual photon case. The operator is gauge invariant, unitary, reference frame independent, and describes the existing data reasonably well. Then it is applied in nuclei to predict nuclear cross sections under a variety of kinematic arrangements. Issues such as the effects of gauge-fixing, the interference of the Δ\Delta resonance with the background, sensitivities to the quadrupole component of the Δ\Delta excitation and to the electromagnetic form factors, the role of final-state interactions, are studied in detail. Methods on how to experimentally separate the various pieces in the coincidence cross section are suggested. Finally, the model is compared to a recent SLAC experiment.Comment: 27 pages in REVTEX, plus 22 PS figures embedded using psfig.sty (included), uuencode

    On the pion electroproduction amplitude

    Full text link
    We analyze amplitudes for the pion electroproduction on proton derived from Lagrangians based on the local chiral SU(2) x SU(2) symmetries. We show that such amplitudes do contain information on the nucleon axial form factor F_A in both soft and hard pion regimes. This result invalidates recent Haberzettl's claim that the pion electroproduction at threshold cannot be used to extract any information regarding F_A.Comment: 14 pages, 6 figures, revised version, accepted for publication in Phys. Rev.

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Heavy Meson Production in Proton-Nucleus Reactions with Empirical Spectral Functions

    Get PDF
    We study the production of K+,ρ,ωK^+, \rho, \omega and ϕ\phi mesons in p+12Cp + ^{12}C reactions on the basis of empirical spectral functions. The high momentum, high removal energy part of the spectral function is found to be negligible in all cases close to the absolute threshold. Furthermore, the two-step process (pN→πNN;πN→N+K+,ρ,ω,ϕpN \rightarrow \pi N N; \pi N \rightarrow N + K^+, \rho, \omega, \phi) dominates the cross section at threshold energies in line with earlier calculations based on the folding model.Comment: 18 pages, LaTeX, plus 14 postscript figures, submitted to Z. Phys.

    Electromagnetic N-Δ\Delta transition form factors in a covariant quark-diquark model

    Full text link
    The electromagnetic N-Δ\Delta transition form factors are calculated in the framework of a formally covariant constituent diquark model. As a spin-3/2 particle the Δ\Delta is assumed to be a bound state of a quark and an axial-vector diquark. The wave function is obtained from a diquark-quark Salpeter equation with an instantaneous quark exchange potential. The three transition form factors are calculated for momentum transfers squared from the pseudothreshold (MΔ−MN)2(M_\Delta-M_N)^2 up to −2(GeV/c)2-2 (GeV/c)^2. The magnetic form factor is in qualitative agreement with experiment. We find very interesting results for the ratios E2/M1 and C2/M1.Comment: 16 pp, RevTeX, 7 figs, uses eps
    • 

    corecore