221 research outputs found

    Pre-Mesozoic Palinspastic Reconstruction of the Eastern Great Basin (Western United States)

    Get PDF
    The Great Basin of the western United States has proven important for studies of Proterozoic and Paleozoic geology [2500 to 245 million years ago (Ma)] and has been central to the development of ideas about the mechanics of crustal shortening and extension. An understanding of the deformational history of this region during Mesozoic and Cenozoic time (245 Ma to the present) is required for palinspastic reconstruction of now isolated exposures of older geology in order to place these in an appropriate regional geographic context. Considerable advances in unraveling both the crustal shortening that took place during Mesozoic to early Cenozoic time (especially from about 150 to 50 Ma) and the extension of the past 37 million years have shown that earlier reconstructions need to be revised significantly. A new reconstruction is developed for rocks of middle Proterozoic to Early Cambrian age based on evidence that total shortening by generally east-vergent thrusts and folds was at least 104 to 135 kilometers and that the Great Basin as a whole accommodated ∌250 kilometers of extension in the direction 287° ± 12° between the Colorado Plateau and the Sierra Nevada. Extension is assumed to be equivalent at all latitudes because available paleomagnetic evidence suggests that the Sierra Nevada experienced little or no rotation with respect to the extension direction since the late Mesozoic. An estimate of the uncertainty in the amount of extension obtained from geological and paleomagnetic uncertainties increases northward from ±56 kilometers at 36°30N to -87+108 kilometers at 40°N. On the basis of the reconstruction, the original width of the preserved part of the late Proterozoic and Early Cambrian basin was about 150 to 300 kilometers, about 60 percent of the present width, and the basin was oriented slightly more north-south with respect to present-day coordinates

    A New Hypothesis for the Amount and Distribution of Dextral Displacement along the Fish Lake Valley–Northern Death Valley–Furnace Creek Fault Zone, California-Nevada

    Get PDF
    The Fish Lake Valley–northern Death Valley–Furnace Creek fault zone, a ~250 km long, predominantly right-lateral structure in California and Nevada, is a key element in tectonic reconstructions of the Death Valley area, Eastern California Shear Zone and Walker Lane, and central Basin and Range Province. Total displacement on the fault zone is contested, however, with estimates ranging from ~30 to ~63 km or more. Here we present a new synthesis of available constraints. Preextensional thrust faults, folds, and igneous rocks indicate that offset reaches a maximum of ~50 km. Neogene rocks constrain its partitioning over time. Most offset is interpreted as ≀ ~13–10 Ma, accruing at ~3–5 mm/yr in the middle of the fault zone and more slowly toward the tips. The offset markers imply ~68 ± 14 km of translation between the Cottonwood Mountains and Resting Spring–Nopah Range (~60 ± 14 km since ~15 Ma) through a combination of strike slip and crustal extension. This suggests that a previous interpretation of ~104 ± 7 km, based on the middle Miocene Eagle Mountain Formation, is an overestimate by ~50%. Our results also help to mitigate a discrepancy in the ~12–0 Ma strain budget for the Eastern California Shear Zone. Displacement has previously been estimated at ~100 ± 10 km and ~67 ± 6 km for the Basin and Range and Mojave portions of the shear zone, respectively. Our new estimate of ~74 ± 17 km for the Basin and Range is within the uncertainty of the Mojave estimate
    • 

    corecore