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ABSTRACT 

Quantitative analysis of tectonic subsidence in Cambrian and Or
dovician platform carbonates and associated strata exposed in the 
Spring Mountains (Nevada) and the Nopah, Funeral, andloyo Ranges 
(California) indicates that subsidence associated with this segment of 
the early Paleozoic passive continental margin is exponential in form, 
consistent with thermal contraction of the lithosphere following ex
tension. As in other parts of the North American Cordillera, confuten
tal separation in the southern Great Basin appears to have taken place 
between 590 and 545 Ma. These results are not sensitive to uncertain
ties in stratigraphic thickness, biostratigraphic age control, or paleo
bathymetry. Uncertainties in the Cambrian time scale lead to predict
able variations in the inferred time of onset ofthermal subsidence, but 
they have no effect on the inferred stratigraphic position of the rift to 
post-rift transition. A younger age for the base of the Middle Cam
brian results in a younger inferred age of onset of thermal subsidence 
accompanied by greater rates of subsidence during the Cambrian, 
whereas a significantly older estimate of tbe onset of thermal subsid
ence can be obtained only if the base of thj! Middle Cambrian is 
substantially older than 540 Ma, a possibility that is inconsistent with 
available data. 

Results of the subsidence analysis are particularly significant be
cause this is one of the few regions along the length of the North 
American Cordillera where they can be compared directly to the geo
logic evidence for syn-rift and post-rift deposition. Basement-involved 
faulting associated with the Amargosa basin ("aulacogen") ceased 
during deposition of the Noonday Dolomite, which is thought to be 
older than 700-680 Ma on the basis of stromatolites of late Riphean 
aff'mity. The overlying Johnnie Formation contains supposed Vendian 
stromatolites (younger than 700-680 Ma). H it is asSumed that our 
resUlts indicate the timing of the final rift to post-rift transition, then 
either the ages inferred from stromatolites are incorrect or the Iitho
sp~ere was thinned regionally after deposition of the Noonday. The 
latter possibility is supported by limited geologic evidence for exten
sion in latest Proterozoic and Early Cambrian time. The lack of ap
preciable physical evidence for crustal extension after deposition of 
the Noonday, however, may imply that (1) a uniform extension model 
for lithospheric thinning is inappropriate for this part of the margin or 
that (2) some or all of the localities studied are continentward of the 
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hinge zone, and that the observed subsidence is exaggerated by flex
ural loading in a deeper basin to the west. 

INTRODUCTION 

Evidence for fragmentation of the Laurentian supercontinent during 
Late Proterozoic and early Paleozoic time is widespread. Grabens and 
passive continental margins of this age are preserved on many continents 
(Bond and others, 1984), and continental dispersal appears to have been 
accompanied by a global rise of sea level related to a decrease in the mean 
age of the oceanic crust (Bond and others, 1988, 1989). Critical to at
tempts to reconstruct the Laurentian supercontinent is determining pre
cisely the time of breakup for specific passive-margin segments. 
Counterpart margins mayor may not have a common history prior to 
breakup, depending on the distribution of older sutures for example, but 
they should be of the same age. Following earlier work in Mesozoic and 
Cenozoic margins (for example, Watts and Ryan, 1976; Steckler and 
Watts, 1978, 1982), Bond and Kominz (1984) developed a procedure to 
recover tectonic subsidence from fully Iithified rocks. Tectonic subsidence 
is the subsidence that would occur in a sedimentary basin in the absence of 
sedimentation and eustatic variations. Quantitative studies of tectonic sub
sidence associated with formation of the early Paleozoic passive margins 
for the North American Cordillera (Bond and others, 1983, 1984, 1985; 
Armin and Mayer, 1983; Bond and Kominz, 1984), eastern North Amer
ica (Bond and others, 1984), several basins across Australia (Bond and 
others, 1984; Lindsay and others, 1987), southeast Turkey, and northwest 
Argentina (Bond and others, 1984) suggest that in many places rifting 
ceased and passive margins formed during latest Proterozoic and Cam
brian time. The age of onset of thermal subsidence indicated by these 
studies ranges from about 600 to 555 Ma. 

In contrast to the timing of passive-margin development indicated by 
quantitative subsiden~ analysis, the most convincing geologic evidence for 
the main rifting ~vent in the western United States is present in strata 
between -800 and 700 Ma (Stewart, 1972; Wright and others, 1976; 
Stewart and SUcZek, 1977; Link; i984; Miller, 1985, 1987; Link and 
others, 1987). The preCise stratigr~phic position of the transition from 
rift-related to passive-margin sedimentation remains controversial, how
ever, with the range of estimates spanning an interval more than 2 km 
thick (Stewart, 1972, 1976; Stewart and Poole, 1974; Wright and others, 
1976; Stewart and Suczek, 1977; Christie-Blick, 1984; Link, 1984; Bond 
and others, 1985; Prave and Wright, 1986; Link and others, 1987; 
Christie-Blick and Levy, 1989a). 

The purpose of this paper is to apply quantitative subsidence analysis 
to the early Paleozoic passive continental margin of the southern Great 
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Basin (Fig. 1), updating earlier studies by Stewart and Suczek (1977) and 
Armin and Mayer (1983), and to address the apparent discrepancy be
tween the geologic evidence for the timing of rifting and the results of 
subsidence analysis, as the subsidence has been analyzed for the most part 
from segments of the margin to the north. The area of eastern California 
and southern Nevada chosen for this study is one of the few segments of 
the North American Cordillera with appropriate stratigraphy and for 
which tectonic subsidence has not been studied in detail. Direct evidence 
for rifting is also well displayed, and tuffaceous beds at several horizons 
may be amenable to U-Pb geochronology of zircons (A. P. LeHuray and 
S. A. Bowring, unpub. data). 

REGIONAL STRATIGRAPHY AND TECTONIC SETTING 

It is generally recognized that strata of Late Proterozoic and early 
Paleozoic age in the western United States record a transition from intra
continental rifting to the development of a passive continental margin 
(Stewart, 1972, 1976; Burchfiel and Davis, 1975; Dickinson, 1977; Bond 
and others, 1985). Marine and nonmarine predominantly siliciclastic sed
imentary and volcanic rocks of Late Proterozoic and Early Cambrian age 
form the lower part of a miogeoclinal wedge and generally thicken west
ward from < 150 m along the eastern margin of the Great Basin to >6,000 
m over a distance of -200 to 300 km (Misch and Hazzard, 1962; Stewart 
and Poole, 1974). The upper part of this wedge consists for the most part 
of peritidal and subtidal carbonate rocks and mudstones of Middle Cam
brian to Devonian age and is as much as 5,000 m thick (Stewart and 
Poole, 1974). 

Figure 1. Map of eastern California and south
ern Nevada, showing locations of stratigraphic sec
tions (dots; modified from Levy and Christie-BUck, 
1989): FM, Funeral Mountains (Pyramid Peak, 
Echo Canyon); 1M, Inyo Mountains (Mazourka 
Canyon); LC, Last Chance Range; NR, Nopah 
Range (1, Emigrant Pass-Carrara Formation; 
2, west side of Nopah Range-Bonanza King 
Formation through Ely Springs Dolomite); PR, Pan
amint Range; SM, Spring Mountains (3, Indian 
Ridge-Bonanza King and Nopah Formations; 
4, Wheeler Wash-Carrara Formation and Pogonip 
Group through Ely Springs Dolomite). On the basis 
of a recent interpretation of the structure of the 
Nopah Range (Wernicke and others, 1988a, 1988b), 
the two sections in the Nopah Range are from the 
Chicago Pass and Keystone thrust plates, respec
tively. After palinspastic reconstruction, these two 
sections are approximately 12 km farther apart (see 
Fig. 3; Levy and Christie-BUck, 1989a). Faults: ct, 
Clery thrust; Ch, Chicago Pass thrust; ES, East 
Sierran thrust system; FC, Northern Death Val
ley-Furnace Creek fault zone; G, Garlock fault; GP, 
Gass Peak thrust; K, Keystone thrust; L, Lemoigne 
thrust; LC, Last Chance thrust; LM, Lake Meade 
fault system; L V, Las Vegas Valley shear zone; MC, 

Strata of Middle to Late Proterozoic Age 

Stratigraphy. The oldest sedimentary rocks in eastern California and 
southern Nevada belong to the Pahrump Group and consist of more than 
3,000 m of predominantly fluvial to marine siliciclastic rocks and peritidal 
carbonate rocks (Fig. 2; Wright and others, 1976, 1981; Labotka and 
Albee, 1977). The Pahrump Group is divided into three formations: the 
Crystal Spring Formation at the base (Roberts, 1976, 1982; Maud, 1983), 
the Beck Spring Dolomite (Gutstadt, 1968; Marian, 1979; Tucker, 1983; 
Zempolich and others, 1988), and the Kingston Peak Formation at the top 
(J.M.G. Miller and others, 1981; Troxel, 1982; Miller, 1985; Walker and 
others, 1986). The Crystal Spring Formation unconformably overlies crys
talline basement with U-Pb ages of 1.8 to 1.4 Ga (Wasserburg and others, 
1959; Silver and others, 1961; Lanphere and others, 1964; Stern and 
others, 1966; Labotka and Albee, 1977; Labotka and others, 1980; Dewitt 
and others, 1984) and contains Baicalia-type stromatolites of middle 
Riphean affinity, suggesting an age of 1.35 to 0.95 Ga (Cloud and 
Semikhatov, 1969; Raaben, 1969; Roberts, 1982). Diabase sills in the 
Crystal Spring Formation have been tentatively correlated with 1.1-1.2 
Ga sills in Arizona (Wrucke and Shride, 1972; Spall and Troxel, 1974; 
Roberts, 1982). The Kingston Peak Formation contains diamictite, in part 
of glacial origin. These strata have been correlated with similar rocks at 
numerous localities in the Cordillera (Crittenden and others, 1972; 
Christie-Blick and others, 1980) and are best dated as between 770 and 
720 Ma (Armstrong and others, 1982; Evenchick and others, 1984; Devlin 
and others, 1985, 1988; Roots and Parrish, 1988). 

The Pahrump Group is conformably to unconformably overlain by 
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Figure 2. Simplified stratigraphic column for the Nopah Range 
and adjacent areas from the Middle Proterozoic through the Ordovi
cian (Hazzard, 1937; Wright, 1973; Wright and others, 1976; Halley, 
1974; Miller, 1982; Palmer and Halley, 1979; Burchfiel and others, 
1982; Sundberg, 1982). The Crystal Spring Formation through Za
briske Quartzite are generalized from the Death Valley region 
(Palmer, 1971; Wright and others, 1976; Prave, 1984; Wertz, 1982, 
1984). The stratigraphic position of the rift to post-rift transition is 
thought to be located within the uppermost Proterozoic to Lower 
Cambrian rocks, delineated by the dashed lines to the left of the 
column. VS, Vendian stromatolites; RS, Riphean stromatolites; black 
dots, tuffaceous horizons. Base of Middle Cambrian, 540 Ma (Harland 
and others, 1982); base of Cambrian, 560(?) Ma on the basis of the age 
of the Mistaken Point Formation (Benus, 1988); stromatolite ages 
from Cloud and Semikhatov (1969) and Raaben (1969). 

the Noonday Dolomite, which consists of as much as 400 m of 
stromatolitic dolomite and changes facies abruptly toward the south into a 
deeper-water basinal equivalent (Cloud and others, 1974; Wright and 
others, 1976, 1978; Williams and others, 1976; Wright and Troxel, 1984). 
Stromatolites in the Noonday Dolomite are considered by some to be 
similar to upper Riphean stromatolites of Siberia, suggesting an age of 
> 700--680 Ma (Wright and others, 1978; Miller, 1985, 1987). 

Tectonic Setting. Wright and others (1976) proposed that the Pah
rump Group was deposited in a fault-bounded basin, the Amargosa 
"aulacogen." Evidence for the existence of this fault-bounded basin 
includes facies, thickness, and clast size trends; compositional data and 
paleocurrent trends, which appear to indicate derivation from elevated 
crustal blocks to the north and south; and the presence of mafic and felsic 
volcanic rocks in both the Crystal Spring and Kingston Peak Formations 
(Roberts, 1976, 1982; Wright and others, 1976; Stewart and Suczek, 
1977; Maud, 1983; Miller, 1985; Walker and others, 1986, 1987; Troxel 
and others, 1987). The strongest evidence for rifting is present in the 
Kingston Peak Formation and lower part of the overlying Noonday Do
lomite (Wright and others, 1976; Stewart and Suczek, 1977; Miller, 1985; 
Walker and others, 1986), but stratigraphic evidence also indicates at least 
two distinct intervals of crustal extension during accumulation of the Crys
tal Spring Formation (Roberts, 1976, 1982). 

The Noonday Dolomite, deposited on a fault-bounded platform 
along the northern margin of the Amargosa basin, unconformably overlies 
the erosional edges of each of the formations of the Pahrump Group and in 
places rests directly on the crystalline basement (Wright and others, 1976, 
1978; Williams and others, 1976). It is of tectonic significance because it 
appears to span a transition from fault-controlled subsidence to a phase of 
thermally driven subsidence (Miller, 1987), but appears to predate by at 
least 100 m.y. the onset of the main phase ofthermal subsidence associated 
with the Paleozoic passive continental margin. 

Although stratigraphic evidence for the existence of the Amargosa 
basin is compelling (Wright and others, 1976), new evidence is now 
emerging that the apparent eastern trend of this basin may be largely a 
function of pronounced extension in this direction during late Cenozoic 
time (Wernicke and others, 1988a, 1988b). Restoration of this deforma
tion dramatically foreshortens the basin (Levy and Christie-Blick, 1989) 
and opens the possibility that its original orientation was quite different, 
perhaps consistent with the north-south stratigraphic trends seen in the 
Panamint Range (PR in Fig. 1; Labotka and Albee, 1977; Miller, 1985). 

Strata of Latest Proterozoic to Early Cambrian Age 

Stratigraphy. Overlying the Noonday Dolomite is a relatively con
formable succession, as much as several kilometers thick, of predominantly 
siliciclastic shallow-marine to fluvial rocks, with minor amounts of car
bonate and mafic volcanic rocks (Fig. 2; Hazzard, 1937; Stewart, 1970, 
1974; Wright and others, 1981). Lithological and paleoecological correla
tion with sections in the White-Inyo region (1M in Fig. 1) suggests that the 
base of the Cambrian section lies within the Stirling Quartzite, possibly 
near the base of the dolomitic D member (Fig. 2; Stewart, 1970, 1982; 
Nelson, 1976; Signor and Mount, 1989), a unit in which problematic 
shelly fossils presumably of Cambrian age have been found (Langille, 
1974). In general, however, the age of these rocks is poorly constrained. 

Tectonic Setting. It has been suggested that the transition from 
intracontinental rifting to continental separation and passive-margin for
mation occurred during deposition of these strata (Bond and others, 1983, 
1985; Armin and Mayer, 1983; Bond and Kominz, 1984; Christie-Blick, 
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1984), but the precise stratigraphic position of the transition is uncertain. 
Stewart (1974) emphasized the remarkable regional persistence of litho
stratigraphic units in this interval, arguing that these rocks therefore 
represent the earliest deposits of the passive-margin succession, whereas 
Christie-Blick (1984), Bond and others (1985), and Christie-Blick and 
Levy (1989a) have suggested that strata within this interval display evi
dence for syn-depositional extension. 

Strata of Middle Cambrian through Ordovician Age 

The Middle Cambrian through Ordovician strata consist of more 
than 3,000 m of platform carbonates with minor amounts of siltstone, 
sandstone, and quartzite (Table 1; Fig. 2; Hazzard, 1937; Pestana, 1960; 
Ross, 1964, 1965; Cornwall, 1972; Wright, 1973; Burchfiel and others, 
1974; Halley, 1974; McAllister, 1976; Miller, 1976, 1982; Palmer and 
Halley, 1979; Burchfiel and others, 1982; Sundberg, 1982) and are dated 
biostratigraphically (Ross, 1965; Palmer, 1971; Miller, 1976, 1982; 
Palmer and Halley, 1979; Palmer, 1982). The Carrara Formation forms 
the basal unit of this interval and ranges in age from late Early Cambrian 
(Olenellus zone) to early Middle Cambrian (Glossopleura zone; Palmer 
and Halley, 1979; Palmer, 1982). Within this formation, the base of the 
Middle Cambrian can be located stratigraphically to within a few tens of 
meters (Palmer and Halley, 1979; Palmer, 1982). This horizon is crucial to 
the construction of our subsidence curves because it is the lowest boundary 
for which it is possible to assign a reliable numerical age. In the Inyo 
Mountains, the base of the Middle Cambrian coincides approximately 
with the base of the Monola Formation (Table I; Palmer, 1971). The 
Middle Cambrian through Ordovician strata exposed in the Nopah Range, 
Spring Mountains, and Funeral Mountains were deposited in peritidal 
environments and pass westward toward the White-Inyo Mountains into 
deeper-water argillaceous limestones (Kepper, 1981; Cooper and others, 
1982; Miller, 1982). Together these rocks are generally regarded as repre
senting deposition on a broad shallow shelf or ramp of a passive 
continental margin (Halley, 1974; Stewart and Poole, 1974; Kepper, 1976, 
1981; Miller, 1976, 1982; Sloan, 1976; Palmer and Halley, 1979; Cooper 
and others, 1981, 1982; R. H. Miller and others, 1981; Sundberg, 1982). 

METHODOLOGY 

Tectonic subsidence is calculated for Cambrian and Ordovician strata 
in the Spring Mountains in Nevada and the Nopah, Funeral, and Inyo 
Ranges in California (SM, NR, FM, and 1M in Fig. 1). These localities 
were chosen because they contain continuously exposed, relatively unde
formed Cambrian and Ordovician strata and are arranged approximately 
in a transect across the early Paleozoic passive margin (Figs. 1 and 3). No 
localities were studied between the Funeral Mountains and the Inyo 
Range because intermediate sections such as the Panamint Range and the 
Last Chance Range are considered too structurally complex for the type of 
analysis discussed in this paper (PR and LC in Fig. 1; Hopper, 1947; Albee 
and others, 1980; Labotka and others, 1980; K. Corbett, 1989, personal 
commun.). The oldest strata for which tectonic subsidence is analyzed are 
of Middle Cambrian age. In addition to the lack of reliable age control in 
rocks older than Middle Cambrian, it is necessary to avoid including 
syn-rift deposits in the subsidence analysis in order to compare results with 
models for thermal decay, and strata of Middle Cambrian age and younger 
are generally regarded as passive-margin deposits. Although older strata 
are not shown on the subsidence curves, latest Proterozoic and Early 
Cambrian strata have been delithified because their compaction contrib
uted in part to the subsidence of younger rocks. Strata younger than 
Ordovician are not included in the study because several unconformities 

are present in the section, and after about 120 m.y. following the onset of 
cooling, most of the thermal anomaly should have been dissipated 
(McKenzie, 1978). 

Tectonic subsidence can be recovered from fully lithified lower Pa
leozoic strata by iteratively correcting measured stratigraphic thicknesses 
for the effects of compaction, sediment loading, varying paleobathymetry, 
and eustatic fluctuations to the extent that these are known (Bond and 
Kominz, 1984). As a first approximation, local isostatic compensation is 
assumed and the effects of lateral heat flow are ignored because it has been 
shown that for margins wider than 100 km, ignoring the effects of flexure 
and lateral heat flow does not alter the form of the subsidence curve, 
although it does affect the slope of the curve (Beaumont and others, 1982; 
Steckler and Watts, 1982; Bond and Kominz, 1984; Bond and others, 
1988). Palinspastic reconstruction of the southern Great Basin indicates 
that this part of the margin was at least 200 km wide in early Paleozoic 
time (Fig. 3; Levy and Christie-Blick, 1989). Therefore, assuming a one
dimensional passive-margin model allows an estimate of the onset of 
thermal subsidence in the southern Great Basin, although it does not 
necessarily yield a very good measure of the magnitude of extension (/3). 
Decompaction of strata yields a range of values depending on whether 
sediments were lithified by physical compaction or by the introduction of 
externally derived cement. Progressively younger strata are iteratively de
compacted and removed from the stratigraphic section (see Fig. 1 of Bond 
and Kominz, 1984). Decompacted values can vary by no more than 
20%-30% between successive data points, and to a first approximation the 
curve shown is subparallel to the minimum and maximum curves (Fig. 4; 
Bond and Kominz, 1984; Bond and others, 1988). No correction is made 
in this study for variations in water depth because facies associations and 
fossil assemblages indicate that all of the strata accumulated in shallow 
water. Furthermore, no correction is made for eustatic sea level because at 
present no reliable interpretation of eustatic change is available for the 
early Paleozoic. Eliminating this correction results in a subsidence curve 
that includes exponentially decaying thermal effects, oscillatory eustatic 
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graphic sections from the Funeral Mountains (FM), Inyo Mountains 
(1M), Nopah Range (NR), and Spring Mountains (SM). 



SUBSIDENCE OF PALEOZOIC CONTINENTAL MARGIN, CALIFORNIA 1595 

Figure 4. Quantitative analysis of tec
tonic subsidence of Cambrian and Ordo
vician rocks of the Nopah Range. The 
lower solid curve shows present-day strat
igraphic thickness plotted as a function of 
geologic age (time scale of Harland and 
others, 1982). Strata older than Middle 
Cambrian are considered poorly dated 
and are not shown; however, strata of the 
JoJJnnie Formation through the lower 
part of the Carrara Formation (latest 
Proterozoic through Early Cambrian) 
have been decompacted, and hence the in
itial data point includes the thickness of 
these units. The lower dashed line shows 
the decompacted t~ickness of stratigraph
ic units, with the vertical bars indicating 
the range of values accounting for lithifi
cation as a result of either compaction 
(maximum value) or cementation (min
imum value). The solid diamonds are 
those formation boundaries that can be 
tied to radiometric ages; the open dia
monds are those horizons for which ages 
have been interpolated linearly on the 
basis of present-day stratigraphic thick
ness. The Rl curve, with delithification 
ranges, represents the combination of 
thermal subsidence, long-term eustasy, 
and randomly varying local effects. The 
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effects, and randomly varying local effects and that is termed the first 
reduction of the data or the RI curve (Fig. 4; Bond and others, 1988; 
equivalent to Y' of Watts and Steckler, 1979). In Figure 5, the RI curves 
from each of the sections examined for this study are superimposed for 
reference on the McKenzie (1978) curves. 

A best-fit exponential curve with a decay constant of 62.8 m.y., 
assumed to represent thermal subsidence of ocean floor (McKenzie, 1978), 
is calculated for the Rl curve by least-squares linear regression and is 
assumed to approximate the thermal component of the RI curve (Fig. 4; 
Bond and others, 1988). The departure of the Rl curve from the best-fit 
exponential curve indicates eustatic sea-level fluctuations and local effects 
superimposed on the exponential curve and is used to generate a second 
reduction of the data, or the R2 curve (Bond and others, 1988). This R2 
curve, discussed below, is an approximation of the trend and magnitude of 
eustatic sea level (Bond and others, 1988). 

A linear relation exists between thermally driven subsidence and the 
square root of time from about 16 to 64 m.y. following rifting that is 
independent of the model used (Sleep, 1971; McKenzie, 1978; Steckler, 
1981), although slight variations may occur when subsidence from earlier 
rifting «80 m.y. earlier) enhances the subsidence of the later rifting. 
Therefore, the Rl subsidence curve and the exponential curve are plotted 
as a function of the square root of time to determine if the curves are 
consistent with a thermal mechanism, and to determine the age of onset of 
thermal subsidence (To). In this procedure, a family of RI curves and 
best-fit exponentials for a given locality is generated assuming different 

values of To, and the slope of the exponential curves is compared to the 
rate of ocean-floor subsidence for crust of the same thermal age (Fig. 6; 
Bond and others, 1983). The maximum age of onset of thermal subsidence 
coincides with the To of the Rl curve for which the exponential has the 
greatest slope but does not exceed the rate of ocean-floor subsidence. 
Regional variations in the rate of subsidence of ocean floor during the first 
80 m.y. yield a range of values of .;;250 to 350 m/m.y.lI> (Parsons and 
Sclater, 1977; Schroeder, 1984; Hayes, 1988; Marty and Cazenave, 1989). 
The oldest To estimated for the southern Great Basin, assuming an average 
rate for ocean-floor subsidence of 300 m/m.y.lI> (Hayes, 1988; Marty and 
Cazenave, 1989), is <590 Ma (Fig. 6). Inasmuch as thinned continental 
crust subsides less rapidly than oceanic crust of equivalent thermal age, 
thermal subsidence may have begun as late as Early Cambrian time «560 
Ma). The younger limit of onset of thermal subsidence is here considered 
to be 545 Ma on the basis of geologic arguments for the presence of a 
passive margin by Middle Cambrian time. 

ERROR ANALYSIS 

A discrepancy exists between the stratigraphic position and age of the 
strata containing the most convincing geologic evidence for Late Protero
zoic rifting (>700 Ma; Wright and others, 1976; Stewart and Suczek, 
1977; Miller, 1985; Walker and others, 1986) and the age predicted by the 
quantitative subsidence analysis for the onset of post-rift thermally driven 
subsidence (590-545 Ma; Bond and others, 1983, 1985; Armin and 
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Figure 5. Rl subsidence curves superimposed on the McKenzie (1978) model curves for 125-km lithosphere, assuming an average To of 
560 Ma for each locality. Thin curves are the model curves; heavy curves are the Rl curves, with vertical bars representing the range of 
delithification v!1lues; solid circles represent formation boundaries tied to radiometric ages; open circles are located at iinearly interpolated 
formation boumlaries; f3 factors are the app~nt stretch~g v!1lues. . 

Mayer, 1983; Bond and Kominz, 1984; this study). A critical evaluation of 
the assumptions of the analysis was undertaken to ascertain tile sensitivity 
of results to ~ystematicerrors. The Nopah Range was chosen as the refer
ence section llecause overall it contains the least deformed and most con
tinuous Middle Cambrian through Ordovician succession of the transect. 
Furth~rmore, the Nopah Range has been well studied, and therefore 
abundant published stratigraphic, biostratigraphic, and structt~ral data are 
available for this locality (HaZzard, 1937; Palmer, 1971; Wright, 1973; 
Halley, 1974; Miller, 1982; Palmer and Halley, 1979; Burchfiel and others, 
1982; Cooper and others, 1982; Sundberg, 1982; McCutcheon and 
Cooper, 1989; McC\ltchecm and others, 1989; Griffin, 1989). 

Initial Assumptions 

Uncertainties in the initial assumptions of the subsidence analysis do 
not significantly affect the estimate of To. These assumptions include 
(1) local Isostatic compensation and one-dimensional heat flow (discussed 
above), (2) a thermal decay constant of 62.8 m.y. and average ocean-floor 
subsidence rate of 300 m/m.y.~, and (3) initial lithospheric thickness of 
125 km and crustal thickness of 31 km. The thermal decay constant varies 
within the modern ocean basins, and it is tltll§ likely that it did s? in the 
Paleozoic <>ce;lns. Higher heat flow in the Paleozoic would reSult in a 
lower decay conStant and faster rates of subsidence. Assuming a decay 
constant of 40 m.y., lower than observed In modem 9(:eanS, reduces the 

deviation between the Rl curve and the exponential, thus reducing the 
estimate of the eustatic fluctuations (Bond and others, 1989). Nonetheless, 
the form of the R2 curve and the timing of the eustatic variations in the 
early Paleozoic are preserved (Bond and others, 1989). Furthermore, if 
results of the subsidence analysis are compared with maximum observed 
ocean-floor subsidence rates in modern oceans of 400 m/!Il.y,~ (Marty 
and Cazenave, 1989), the esti!Ilate of To would not be substantially older 
than 590 Ma (Fig. 6). The rate of subsidence increases to a small extent if 
the lithospheric thickness is greater, but cannot exceed the rate of ocean
floor subsidence (Bond and others, 1988). The form of the subsidence 
curve is unaffected by variations in the crustal thickness, although the 
magnitude of extension necessary to generate'a given amount of subsid
ence is in part dependent on crustal thickness (Bond and others, 1988). 

Stratigraphic Thickness 

Two potential sources of error in determining accurate stratigraphic 
thicknesses are related to pressure solution (stylolitization) and undetected 
faulting. Pressure solution is thought not to have affected the results signifi
cantly for two reasons. First, subsidence curves appear to be of thermal 
form on a regional sCale in both eastern and western North America (Bond 
and others, 1983, 1985; Bond and Kominz, 1984), and their shape is 
therefore not controlled by rllndo~ variations in stylolitization. Second, 
although minor amounts of pressure solution were observed in outcrop 

, . 
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and in thin section, field observation did not intlicate a systematic strati
graphic bias in the degree of stylolitization that might have influenced the 
shape of the subsidence curve. The presence of undetected faults would 
have the greatest effect on the subsidence analysis if structural complica
tions were preferentially distributed in the Cambrian part of the section 
where structural thinning would produce a flatter curve and suggest an 
older estimate of To, whereas structural thickening would produce a 
steeper curve and a younger estimate of To. 

Through reference to published mapping (Nopah Range-Wright, 
1973; Burchfiel and others, 1982, 1983; Spring Mountains-Burchfiel and 
others, 1974; Funeral Mountains-McAllister, 1971, 1974; Inyo Range
Ross, 1965) and critical re-examination of relevant structural relations in 
the field, we are confident that only minor structural complications are 
present. For example, in the Funeral Mountains, pervasive small-scale 
normal faults were observed in the Bonanza King Formation. On the basis 
of spacing of and displacement on abundant small-scale normal faults, the 
apparent map thickness (1,288 m) was estimated to be approximately 30% 
too great. The corrected stratigraphic thickness (914 m) is shown in Table 
1 and Figure 2 and used in the calculation of tectonic subsidence. In the 
Nopah Range and Spring Mountains, a rather thin section of Carrara 
Formation is present, possibly as a result of distributed structural thinning. 
If the true thickness of the Carrara Formation were greater, however, the 
effect on the subsidence analysis would be to produce a steeper early 
Middle Cambrian segment of the Rl curve and to indicate a younger 
inferred timing of onset of thermal subsidence. In the Inyo Mountains, 
field-checking of structural and stratigraphic data revealed evidence of 
flattening around Mesozoic plutons, including foliation parallel to the 
boundaries of the plutons and associated small-scale folds. Although over
all flattening appears to be distributed more or less uniformly through the 
section, the existence of such deformation casts doubt on the significance 
of the derived Rl curve. The curve is also relatively flat and, for this reason 
alone, difficult to interpret. 

Biostratigraphic Control 

Minor uncertainties in the biostratigraphic age of the rocks in this 
study have little effect on the estimate of To. In the Nopah Range, for 
example, there is little variation in published ages for individual formation 

14 

Figure 6. Rl curves and exponential curves plot
ted as a function of the square root of time for Middle 
Cambrian through Ordovician rocks of the Nopah 
Range. A family of curves is generated assuming differ
ent values for To. Solid lines are the Rl curves; dashed 
lines are the best-fit exponentials with a decay constant 
of 62.8 m.y. The slope of the exponential curves is 
calculated and compared to the rate of ocean-Door sub
sidence, which ranges from .;;250 to 350 m/m.y.~ 
(Parsons and Sclater, 1977; Schroeder, 1984; Hayes, 
1988; Marty and Cazenave, 1989). If an average ocean
Door subsidence rate of 300 m/m.y.~ is assumed, then 
the oldest estimate of To is < 590 Ma. If maximum ob
served rates of ocean-Door subsidence in modem 
oceans (400 m/m.y.~; Marty and Cazenave, 1989) are 
assumed, then To would be -610 Ma. 

boundaries (Palmer, 1971; Palmer and Halley, 1979; Cooper and others, 
1982). An exception is the contact between the Nopah Formation and the 
Pogo nip Group, conventionally placed at the Cambrian-Ordovician 
boundary on the basis of trilobite biostratigraphy (Fig. 2; Hazzard, 1937; 
Palmer, 1971). Conodont studies indicate that in the Nopah Range, much 
ofthe Pogonip Group (defined by Hazzard) is Middle Ordovician (Miller, 
1982), althougli no samples were collected from the lowest 90 m, and an 
Early Ordovician age for at least part of this interval is not precluded. If 
the conodont data are accepted, however, linear interpolation of formation 
boundaries within the Late Cambrian-Early Ordovician interval on the 
basis of present-day stratigraphic thickness (method of Bond and Kominz, 
1984) implies an unrealistically young age (latest Cambrian) for the Dun
derberg Shale (Fig. 7B). Available biostratigraphic data place this forma
tion in the Dunderbetgia biozone (early Late Cambrian; Cooper and 
others, 1982). This suggests that the Nopah Forination and lowermost 
Pogonip Group of the Nopah Range accumulated at markedly different 
rates, possibly owing to the presence of undetected hiatuses, and/or that 
the Cambrian-Ordovician boundary is located within the interval desig
nated by Hazzard (1937) as Nopah Formation. Consistent with the latter 
view, Cooper and others (1982) included the upper 235 m of the Nopah 
Formation (215 m by our measurement) in the Pogonip Group. In our 
analysis (Table 1; Figs. 4 and 7 A), we have followed Burchfiel and others 
(1982) in accepting Hazzard's lithostratigraphy. None of these uncertain
ties significantly affects the estimate of To (Fig. 7B). 

Biostratigraphic uncertainty also affects the location of the Middle
Late Cambrian boundary within the Bonanza King Formation. At the top 
of the Papoose Lake Member (lower member of the Bonanza King For
mation), the presence of trilobites assigned to Ehmania? indicates a Middle 
Cambrian age (Palmer and Hazzard, 1956; Palmer, 1971). Most of the 
Banded Mountain Member (upper member) is unfossiliferous, but the 
upper 100 m has yielded trilobites of the Late Cambrian Crepicephalus, 
Aphelaspis, and Dicanthopyge zones (Palmer, 1965, 1971). The Middle
Late Cambrian boundary therefore falls somewhere within the unfossilif
erous interval. Figures 7C and 7D are subsidence curves generated by 
assuming a minimum thickness (100 m) and maximum thickness (840 m) 
of the Banded Mountain Member in the Late Cambrian, respectively 
(Palmer, 1971). We assume an intermediate thickness of approximately 
300 m, or 25%, of the Bonanza King Formation falls within the Late 
Cambrian (Fig. 7A). The estimate of To, however, is not significantly 
affected by this uncertainty in the stratigraphic position of the Middle-Late 
Cambrian boundary (Figs. 7 A, 7C, and 7D). 
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mates, is compared with modified tectonic 
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Solid· circles represent formation bounda
ries tied to radiometric ages. Open circles 
repres,ent formation bolllDdaries that are 
interpolated linearly on the basis of 
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cal bars represent the range of tectonic 
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which the Early-Middle Ordovician 
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Tie·points: 540 ± 14 and 488 ± 10 
ers (1982). In this case, the maximum du- .. 
ration is permitted, generating a curve that is roughly similar to the reference curve, suggesting a slightly older To. F. In this case, the duration 
of the Cambrian Period is allowed to vary to produce the minimum duration. The new curve generated suggests a younger To, with a slope that 
is considerably steeper than that of the reference curve. 

Geologic Time Scale 

Bond and Kominz (1984) and Bond and others (1988) compared 
several relatively similar time scales to determine theireffect on subsid~nce 
analysis. Although absolute ages of individual bound.aries from the time 
scales included in those studies vary somewhat from one time scale to 
another, differences in the ~Iuration of time-stratigraphic units are relatively 
small, and the use of any of these time scales has been found to produce 
curves with essentially the same form (Bond and Kominz, 1984; Bond and 
others, 1988). One exception to this is the time scale of Odin (Odin, 1982, 
1985; Odin and others, 1983), in which the base of the Cambrian is very 
much younger (530 ± 10 Ma) than in other time scales, and the duration 

ofthe Cambrian mllch shorter (Fig. 8). Odin's time scale (1982) has been 
criticized by Harland (1983) with regard to its data base. Recent new data, 
however, lend support to a younger age for the Precambrian-Cambrian 
boundary, although at this ti,?e, an age of 530 Ma is not generally ac
cepted (W. Compston imd others, cited by Cowie and Johnson, 1985; 
Cope and Gibbons, 1987; S. M. Barr, 1988, personal commun.; Benus, 
1988; Krogh and others, 1988; Conway Morris, 1988, 1989; Harland and 
others, 1989). 

In this study, we use the time scale of Harland and others (1982; Fig. 
8). The data base for the early Paleozoic portion of this time scale is drawn 
primarily from the Phanerozoic Time Scale (PTS; Harland and others, 
1964), the Phanerozoic Time Seale Supplement (PTSS; Harland and 



SUBSIDENCE OF PALEOZOIC CONTINENTAL MARGIN, CALIFORNIA 1599 

Ashgillian 
w 
!;( 

Caradocian .... 
Z « 

L1andeilia n (3 w 
:> .... 

Q 
0 Q 
Q 5 L1anvirnian 
a: 
0 

~ 
Arenigian 

a: 
~ Tremadocian 

w .... 
e( .... 

Z « w ii: .... 
a:I Q 

== 
Q 

« 5 
0 

>-.... 
a: 
c( 
w 

~N 
illS: " .... CII 
III" -GI 
",c 
lil-
%:0 

438 
i6 

448 
i6 

458 

r--

r--

i8 

468 
i8 

478 
i8 

488 
i10 

505 
i16 

523 
i18 

540 
i14 

590(1) 

II " .... CII 
III" -GI 
",c 
li-
%:0 

439 
±7 

443 
±7 

464 
i8 

469 
i7 

476 
±7 

493 
i9 

510 
i10 

517 
i17 

536 
i5 

570 
±15 

N s: ... 
C 

8 
418 

+5-10 

425 
i8 

438 
i5 

470 
i10 

475 
+10-5 

495 
+10-5 

530 
i10 

Figure 8. Comparison of the geologic time scale of Harland and 
others (1982), used in this study, with their revised time scale (Harland 
and others, 1990) and with that of Odin (1982) for the Cambrian and 
Ordovician Periods. 

Francis, 1971), and the pre-Cenozoic data file of Armstrong (A; Arm
strong, 1978). Numerical ages have been recalculated using the new decay 
constants (see Harland and others, 1982, p. 46). Radiometrically con
strained tie points and interpolated ages are used to construct the time 
scale. For most stage boundaries older than 200 m.y., tie points are those 
ages that have an error range ofless than 12 m.y. Exceptions to this are the 
poor tie points at the base of the Middle Cambrian (540 Ma) and at the 
base of the Arenigian in the Early Ordovician (488 Ma), which have error 
ranges of 28 and 20 m.y., respectively. Between these tie points, ages are 
interpolated linearly. On the basis of the midpoints and the maximum 
limits of these Cambrian and Ordovician tie points (that is, 540 ± 14 and 
488 ± 10 Ma; Fig. 8; Harland and others, 1982), subsidence curves are 
constructed in which the duration of the Middle and Late Cambrian is 
permitted to vary (Figs. 7 A, 7E, and 7F). In Figure 7E, the maximum 
duration of these time-stratigraphic units on the basis of the error ranges is 
assumed (51 m.y.), and the boundaries between the tie points are interpo
lated linearly, whereas in Figure 7F, the minimum duration is assumed 
(19 m.y.). In Figure 7A, the reference curve, the midpoint of the range of 
the tie points is used, yielding a 35-m.y. duration. 

Because of the importance of the Middle Cambrian tie point in 
constructing the subsidence curves, we have examined in detail the data 

base and statistical approach used in the calculation of this age (Harland 
and others, 1982, p. 46-50). According to the methodology of Harland 
and others (1982), the age of a stage boundary is estimated and an error 
for that age is determined on the basis of the error values of individual 
determinations constraining the stage boundary. This procedure is re
peated, assuming different estimates for the age of the stage boundary, until 
the error is minimized. Greatest importance is placed on those ages closest 
to the estimated age of a boundary, because only those ages from the older 
interval that are younger than the estimated age of the boundary and those 
ages from the younger interval that are older than the estimated age of the 
boundary constrain the age and error range of the boundary between the 
two intervals. A graphic representation of the data base for a given bound
ary is termed a "chronogram" (Fig. 9; Harland and others, 1982). We 
consider briefly all the age determinations in the data base for the Middle 
Cambrian tie point, but concentrate on those ages closest to the estimated 
boundary between the Early Cambrian and Middle Cambrian. There are 
five determinations in the data base for the Early Cambrian (Fig. 9). Of 
these, three are determinations on granite intrusions (PTSS353, PTS42, 
and A486 in Fig. 9) and are considered reliable. The remaining two 
determinations are K-Ar and Rb-Sr ages on glauconite (PTS185 and 
PTS183 in Fig. 9) and are suspect (Harland, 1983; Berggren and others, 
1985; Obradovich, 1988). A K-Ar age on glauconite from the Kessyusse 
Beds in Siberia (536 ± 12 Ma; PTS185 in Fig. 9), however, is closest to the 
estimated boundary and is the key date from the Early Cambrian. For the 
Middle Cambrian, there are four determinations (Fig. 9). Of these, only 
one is a date on an igneous intrusion (Boisdale Hills granite, Cape Breton; 
PTS70 in Fig. 9). The remaining determinations are K-Ar and Rb-Sr ages 
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Figure 9. Chronogram for the Middle Cambrian tie point (modi
fied from Harland and others, 1982). Circles are data points from the 
Middle Cambrian and younger; open circles are sedimentary ages on 
glauconite or shale; solid circles are igneous ages. Squares are data 
points from the Early Cambrian and older; open squares are sedimen
tary ages on glauconite; solid squares are igneous ages. 
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on glauconite or shale (A426, A473, and A474 in Fig. 9). Of these dates, 
all but the youngest age are close to the estimated age of the boundary. 
On the basis of these radiometric ages, Harland and others' statistical 
method predicts an error range of 28 m.y., with the Middle Cambrian tie 
point at 540 Ma. Although it is preferable to use igneous determinations 
for older rocks, it is not possible to eliminate all the sedimentary ages and 
retain enough data points to use the statistical approach of Harland and 
others (1982). 

Re-evaluation of two important data points suggests that 540 Ma is a 
reasonably reliable age for the base of the Middle Cambrian. Recent new 
dating of granitoid rocks in the Boisdale Hills region of Cape Breton yields 
an older age of 574 ± 11 Ma (Poole, 1980; Barr and Setter, 1986). 
Re-examination of the field relations indicates that the Boisdale Hills 
granite does not intrude Cambrian sediments as previously thought, but is 
unconformably overlain by the Middle Cambrian Bourinot Group, thus 
suggesting that the stratigraphic age of the Boisdale Hills granite is Early 
Cambrian or older (Barr and Setter, 1986; S. M. Barr, 1988, personal 
commun.). In the revised data base for the Middle Cambrian tie point, the 
Boisdale Hills granite is placed in the Early Cambrian and no longer affects 
the estimated age of the boundary. Nonetheless, the best estimate for the 
base of the Middle Cambrian remains at 540 Ma. 

A second potential data point thought to constrain the age of the base 
of the Middle Cambrian is the Ercall Granophyre in Shropshire, England. 
The nature of the contact between the Ercall Granophyre and the overly
ing Cambrian sediments has been uncertain, but recent excavation at the 
Ercall Quarry has exposed this contact. New structural and sedimentary 
evidence now indicates that the contact between the Ercall Granophyre 
and the Early Cambrian (late Tommotian) Wrekin Formation is an un
conformity, with the Ercall Granophyre having intruded the Vriconian 
volcanic rocks (Precambrian), and subsequently having been uplifted and 
eroded prior to deposition of the Wrekin Formation (Cope and Gibbons, 
1987). Thus, the stratigraphic age of the Ercall Granophyre is pre-late 
Tommotian. The age of the Ercall Granophyre has been determined by 
Patchett and others (1980) as 533 ± 13 Ma, using the Rb-Sr method. A 
widely circulated V-Pb age of 531 ± 5 Ma by ion microprobe on zircon 
from the Ercall Granophyre (W. Compston and others, cited by Cowie 
and Johnson, 1985) must be increased by 3.8% to 551 Ma, because of 
revision in the conventional V-Pb age of the ion-probe zircon standard 
(W. Compston, 1988, personal commun.). No further discussion of this 
data point seems warranted until the authors have published their primary 
data. 

Although the age of the base of the Cambrian does not directly affect 
the Middle Cambrian tie point unless it is .;;540 Ma, some recently pub
lished data suggest that the age of this boundary may in fact be younger 
than previously thought. Strongest support of a younger age for the base of 
the Cambrian comes from the A valon Peninsula in Newfoundland (Benus, 
1988; Conway Morris, 1988, 1989). The best-constrained date is from a 
tuff in the Mistaken Point Formation. The tuff is interbedded with strata 
that contain Ediacaran fauna and has yielded a V-Pb zircon age of 565 ± 3 
Ma (Benus, 1988). Approximately 8.7 km of sedimentary rock is present 
between this horizon and the first appearance of Early Cambrian (Tom
motian) fauna (Benus, 1988). In the absence of undetected structural 
complexities, these data strongly indicate that the base of the Cambrian is 
younger than 565 Ma and perhaps closer to the age suggested by Odin 
(Conway Morris, 1988, 1989). The base of the Cambrian is given as 560 
Ma in Figure 2. 

In a revised version of their 1982 time scale, Harland and others 
(1990) considered the base ofthe Middle Cambrian to be slightly younger 
(536 Ma), primarily on the basis of the 531 ± 5 Ma age determination for 
the Ercall Granophyre in Shropshire, England, mentioned above 

(W. Compston and others, cited by Cowie and Johnson, 1985; Cope and 
Gibbons, 1987). If this point is eliminated from the data base, then the age 
of the base Middle Cambrian becomes 539 Ma, virtually identical to that 
of the 1982 time scale. On the basis of the revised time scale (assuming an 
age of 539 Ma for the base Middle Cambrian), the duration of the Middle 
and Late Cambrian is 29 m.y., which falls well within the error range for 
this same time interval in the 1982 time scale (see above). 

The geologic time scale is subject to continual refinement as more 
data are incorporated and advanced techniques allow more accuracy and 
precision in age determinations. It is crucial to understand how future 
changes in a time scale will affect the results of this study. As mentioned 
above, the changes in the Middle and Late Cambrian part of the time scale 
have the most influence on our results. In general, a time scale with an 
increased duration of the Middle and Late Cambrian will produce a sub
sidence curve with a gentler slope and predict a slightly older estimate of 
To (Fig. 7E). Significantly older estimates ofT 0 can be obtained only if the 
base of the Middle Cambrian is significantly older than 540 Ma, which at 
present seems unlikely because recent estimates of the age of the 
Precambrian-Cambrian boundary indicate that it is younger than 565 Ma 
and possibly as young as 540 Ma (Benus, 1988; Conway Morris, 1988, 
1989). A reduced duration of the Middle and Late Cambrian results in a 
steeper subsidence curve and predicts a slightly younger age of initiation of 
thermal subsidence (Fig. 7F). Changes in the duration of the Ordovician 
will have little effect on our results because by the Ordovician, most of the 
thermal anomaly had dissipated. If there were a systematic change toward 
younger ages for time boundaries, with the duration of time-stratigraphic 
intervals remaining constant, this would be reflected in a similar systematic 
shift to a younger estimate of To, but would not affect the stratigraphic 
position of the To horizon. In general, however, reasonable variations in 
the time scale do not significantly affect estimates of To. 

Paleobathymetry 

In the construction of tectonic subsidence curves, the correction for 
paleo-water depths of < 100 m is negligible (Bond and Kominz, 1984). In 
all the localities of this study, the facies are interpreted to represent 
shallow-water shelf deposition (Halley, 1974; Stewart and Poole, 1974; 
Kepper, 1976, 1981; Miller, 1976, 1982; Sloan, 1976; Palmer and Halley, 
1979; Cooper and others, 1981, 1982; R. H. Miller and others, 1981; 
Sundberg, 1982). An association of features, including fenestral fabric, 
microbial laminae, burrow mottling, and desiccation cracks, suggests 
shallow-water deposition. Fossil assemblages, consisting of trilobites, bra
chiopods, pelmatozoans, stromatolites, and thrombolites, also support a 
shallow-water subtidal to intertidal shelf interpretation. Therefore, it is 
unnecessary to include a water-depth correction, because changes in water 
depths are small in comparison with the total amount of subsidence. 

DISCUSSION 

Geologic Evidence for Rifting in Late Proterozoic and Cambrian Time 

Several stratigraphic units considered to be related to rifting have 
previously been identified and described in the Middle Proterozoic 
through Lower Cambrian rocks of western North America, with the most 
convincing geologic evidence for rifting present in rocks older than about 
700 Ma. In the Mackenzie Mountains of northwestern Canada, for exam
ple, rifting is well documented in strata of Late Proterozoic age imme
diately underlying the glacial beds and appears to have ended during 
deposition of post-glacial siltstones (Jefferson, 1978; Eisbacher, 1981, 
1985). In eastern California, rifting associated with the Amargosa basin 
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ended during deposition of the Noonday Dolomite (older than 700-680 
Ma; Wright and others, 1976; Roberts, 1982; Miller, 1985). A number of 
geologic observations, however, suggest that crustal extension may have 
continued into Cambrian time, corroborating the timing indicated by sub
sidence analysis (Christie-Blick, 1984; Bond and others, 1985; Christie
Blick and Levy, 1989a). The most important of these observations is the 
presence through much of the western United States of volcanic rocks as 
young as Early Cambrian age (Christie-Blick and Levy, 1989a). Although 
volumetrically limited, the rocks are strongly suggestive of continued ex
tension, because for the most part igneous activity either predates or coin
cides with times of crustal extension and is unusual in the post-rift phase of 
passive continental margins (for example, Bally and others, 1981; Scrut
ton, 1982; Watkins and Drake, 1982). Other evidence for tectonic activity 
includes local angular unconformities, facies evidence for marked changes 
in either the orientation or steepness of the paleoslope, and compositional 
variations in sandstones that are consistent with local uplift and erosion of 
crystalline basement (Christie-Blick, 1984; Bond and others, 1985; 
Christie-Blick and Levy, 1989a). 

Volcanic rocks are most abundant at the stratigraphic level of the 
diamictites (Crittenden and others, 1983; Link, 1983; Christie-Blick, 1985; 
Miller, 1985; Harper and Link, 1986), but they are also known in Nevada 
from rocks as young as the uppermost Stirling Quartzite (Early Cambrian; 
Stewart, 1974), and in Utah from the Browns Hole Formation, lower 
Prospect Mountain Quartzite, and lower Tintic Quartzite (latest Protero
zoic to Early Cambrian; Morris and Lovering, 1961; Crittenden and 
others, 1971; Crittenden and Wallace, 1973; Abbott and others, 1983). 
The rocks consist of mafic to intermediate-composition flows and sills, and 
lesser amounts of volcaniclastic sandstone, conglomerate and breccia, and 
tuffaceous shale. Available chemical data suggest that the volcanic rocks in 
the lower part of the section are of tholeiitic to alkalic affinity (Stewart, 
1972; Harper and Link, 1986), consistent with the range of compositions 
for igneous rocks in extensional continental settings (Barberi and others, 
1982). In northern Utah and southeastern Idaho, for example, mafic vol
canic rocks interstratified with diamictite are high-Ti, high-Zr/Y within
plate basalts, with Nb/Y ratios and patterns of light-REE enrichment 
indicative of transitional tholeiitic-alkalic to alkalic compositions (Harper 
and Link, 1986). Similar results were obtained by Devlin and others 
(1985) for mafic volcanic rocks from the approximately correlative 
Huckleberry Formation of northeastern Washington, and by Reid and 
Sevigny (1988) and Sevigny (1988) from metavolcanic rocks ofthe Horse
thief Creek Group in southwestern Canada. Comparable data have not yet 
been obtained for the younger volcanic rocks in the western United States, 
although the Browns Hole Formation appears to contain rocks of alkalic 
affinity (Crittenden and Wallace, 1973). 

Angular unconformities are unusual in the post-glacial section of the 
western United States (Stewart, 1970; Crittenden and others, 1971), but a 
good example with angular discordance of about 10° is present in the 
Wasatch Range southeast of Salt Lake City, Utah, at the base of the Tintic 
Quartzite (Early to Middle Cambrian). Less impressive unconformities 
have been mapped in eastern California at the base of both the middle 
member of the Wood Canyon Formation (Early Cambrian) and the 
Stirling Quartzite (latest Proterozoic to Early Cambrian). All of these un
conformities are consistent with local deformation of the crust, although 
only the Tintic unconformity requires structural tilting (Christie-Blick and 
Levy, 1989a). Considerably more prominent angular unconformities are 
present in the Canadian Cordillera beneath the Gog Group and Backbone 
Ranges Formation (both latest Proterozoic to Cambrian; Hofmann and 
Aitken, 1979; Eisbacher, 1981; Bond and others, 1985; Aitken, 1989). 
The Canadian examples indicate a major tectonic event of regional extent 
at about the inferred time of onset of thermal subsidence. 

Local changes in the orientation or steepness of the paleoslope also 
are suggestive of crustal deformation, perhaps related to continuing exten
sion (Christie-Blick and Levy, 1989a). In eastern California, the Wood 
Canyon Formation records an abrupt change in paleoslope orientation 
(Diehl, 1976, 1979). The middle member consists of as much as several 
hundred meters of conglomeratic and arkosic sandstone, interpreted by 
Diehl to have accumulated in a braided alluvial to tidally dominated 
marine environment. The rocks thicken and coarsen to the northeast and 
yield southwest-directed paleocurrents. In comparison, overlying and un
derlying stratigraphic units thicken to the west or northwest and yield 
west- to north-directed and polymodal paleocurrents. Diehl (1976, 1979) 
suggested that the middle part of the formation accumulated in a fault
bounded basin and that the immature sediment was derived from an 
uplifted source area northeast of the Death Valley region. 

Most of the Late Proterozoic to Cambrian sandstones of the western 
United States are exceedingly mature both texturally and compositionally 
(Christie-Blick and Levy, I 989a, 1989b). The volume of sediment in
volved precludes significant recycling from older sandstones and suggests 
derivation directly from crystalline basement either by intense chemical 
weathering in a warm, humid climate (Chandler, 1988; Johnsson and 
others, 1988; Christie-Blick and Levy, 1989b) or by eolian deflation and 
preferential removal of feldspar and lithic fragments as wind-blown dust 
(Dalrymple and others, 1985; R. W. Dalrymple, 1989, personal com
mun.). The local presence of immature feldspathic sandstones in the Wood 
Canyon Formation as well as in the Mutual Formation and Geertsen 
Canyon Quartzite of Utah indicates temporary variations in the efficiency 
of weathering processes, perhaps as a result of crustal uplift and enhanced 
rates of erosion. 

Isotopic dating may provide an independent means of comparing the 
inferred age of onset of thermal subsidence determined from the subsid
ence analysis with the geologic evidence for latest Proterozoic and Early 
Cambrian rifting in the southern Great Basin. A tuffaceous bed near the 
base of the Johnnie Formation in the Nopah Range has yielded zircons 
amenable to U-Pb dating (A. P. LeHuray, 1990, personal commun.). If the 
age of this tuff is > 590 Ma, it can be assumed that extension continued 
after deposition of the Noonday Dolomite and that onset of thermal 
subsidence in latest Proterozoic or Early Cambrian time corresponds to a 
horizon stratigraphically as high as the Stirling Quartzite or Wood Canyon 
Formation (Fig. 2). If the age of the tuff is < 590 Ma, we cannot eliminate 
the possibility that post-rift thermal subsidence began during deposition of 
the Johnnie Formation. In that case, however, either the ages inferred from 
the stromatolites within the Johnnie Formation and the Noonday Dolo
mite are incorrect or a significant hiatus is present in the transition between 
these units. On the basis of results presented in this paper and available 
geologic data, we predict that the tuff is about 650 Ma (or older) and that 
the Amargosa basin is unrelated to the phase of thermal subsidence asso
ciated with the early Paleozoic passive margin. 

Sea Level 

In all of the subsidence curves generated for the early Paleozoic 
passive continental margins in both eastern and western North America, 
the exponential curve deviates from the Rl curve for Middle and Late 
Cambrian time probably as a result of eustatic change (Bond and others, 
1988; this study). Bond and others (1988) have shown that a measure of 
eustasy can be recovered from the Rl curve by removing the tectonic 
subsidence, assumed to correspond approximately with the best-fit expo
nential having a decay constant of 62.8 m.y. The deviation of the Rl curve 
from the exponential is plotted as apparent sea level versus age, and is 
called the second reduction of the data or the R2 curve (Bond and others, 
1988). 
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Figure 10. A. Plot ofthe R2 curves for the Nopah Range (NR), Spring Mountains (SM), and Funeral Mountains (FM). The Inyo Range is 
not included because the strata have experienced structural thinning. The R2 curve is determined by subtracting the exponential curve from the 
Rl curve and plotting the deviation. Apparent sea-level change is the difference between the R1 curve and the exponential curve (Bond and 
others, 1988). The zero datum differs from present-day sea level by an unknown amount. The R2 curve indicates the trend oflong-term eustasy 
and is an approximation of the magnitude (see text). A sea-level rise is indicated in the Middle to Late Cambrian, followed by a sea-level fall in 
the Early Ordovician. B. Iterative approach of Watts and Steckler (1979) of isolating eustatic and tectonic effects in subsidence analysis. An 
average sea-level curve is generated by averaging R2 curves shown in Figure lOA. C. Nopah Range reference curve. Heavy curve represents 
the Rl curve; thinner curve is the best-fit exponential curve. D. Result of the first iteration of averaging the R2 curves and removing that curve 
from the original Rl curve. Heavy curve is the new Rl curve generated; thinner curve is the best-fit exponential with a decay constant of 62.8 
m.y. to the new Rl curve .. 

The R2 curve is only an approximation of eustasy for several reasons. 
(1) The zero datum, taken as the point at which the Rl curve and the 
exponential curve coincide, differs from present-day sea level by an 
unknown amount (Bond and others, 1988). (2) The best-fit exponential 
is only an approximation for tectonic subsidence because the eustatic 
component of the Rl curve clearly varies through time. (3) The value of 
the decay constant of the exponential may deviate from 62.8 m.y. (Bond 
and others, 1988; Marty and Cazenave, 1989). (4) The lithosphere is 
assumed to have no strength, and thus changes in water loading are 
compensated only locally (Airy compensation). (5) The R2 curve con
tains no correction for the effects of water loading, which for local iso
static compensation increases the magnitude of apparent sea-level change 
by a factor of about 1.4. 

The R2 curves generated for the California margin indicate a eustatic 
rise in the Cambrian, with a maximum rise occurring between 525 and 
505 Ma, followed by a eustatic fall in the Ordovician (Fig. lOA). The 
timing and approximate magnitude of the eustatic fluctuation agree well 
with those inferred for western Canada, Utah, and the southern Appala
chians (Bond and others, 1988). A correction for the effects of water 
loading yields an apparent eustatic rise of about 120 m in the Middle to 
Late Cambrian, similar to estimates of the magnitude of eustatic rise 
suggested for the Mesozoic (Kominz, 1984; Harrison, 1990). 

Watts and Steckler (1979) suggested that the effects of eustasy can be 
separated from tectonic subsidence, represented by that part of the curve 
that is exponential in form, by employing an iterative process. The devia-

tions of the Rl curve from the exponential curve for each locality studied, 
with the exception of the Inyo Range, are averaged together, following 
their procedure, to generate an average sea-level curve (Fig. lOB). This 
procedure tends to remove local effects and generates an estimate of the 
eustatic signal that is uniform from one locality to another. This average 
sea-level curve, which may be a more accurate estimate of the magnitude 
of fluctuation, is then removed from the Rl curve, resulting in a new 
tectonic subsidence curve. A new best-fit exponential with a decay con
stant of 62.8 m.y. is fit to this tectonic subsidence curve and the process is 
repeated until the deviation between the tectonic subsidence curve and the 
exponential is minimized. The result of the first iteration of this process for 
the Nopah Range is compared with the reference curve (Figs. lOC and 
lOD). Removing the effects of eustatic sea level markedly improves the fit 
of the tectonic subsidence curve to the exponential curve; however, slight 
deviations still remain. These deviations cannot be explained by eustatic 
sea-level changes, and may be the result oflocal tectonic effects, uncertain
ties in biostratigraphic age control, changes in the rate of sedimentation 
and/or breaks in sedimentation, or minor structural complications affect
ing stratigraphic thicknesses. 

Comparison with Previous Studies 

Results from this study are in general agreement with the conclusions 
of previous studies of subsidence across the early Paleozoic passive margin 
of western North America (Stewart and Suczek, 1977; Armin and Mayer, 
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1983; Bond and others, 1983; Bond and Kominz, 1984), which demon
strated that thermal subsidence in the Cordilleran miogeocline began be
tween 600 and 550 Ma. Ofthese studies, those by Bond and others (1983) 
and Bond and Kominz (1984) are definjtive, but refer to areas of the 
western United States and Canada north of the localities discussed in this 
paper. In an earlier study, Stewart and Suczek (1977) suggested that in 
eastern California, thermal subsidence may have begun between 650 and 
600 Ma, but their conclusions are based on uncorrected stratigraphic 
thickness and in part on the stratigraphic position of the Precambrian
Cambrian boundary, which is not well constrained. 

Armin and Mayer (1983) analyzed the tectonic subsidence at four 
localities in the western United States, including the Panamint Range, 
California (PR in Fig. 1; Fig. llA), but their results are difficult to evalu
ate. In correcting for the effects of compaction in fully lithified rocks, 
stratigraphic thickness and decompacted thickness should be the same only 
for the time of deposition. For the Panamint Range section, however, 
Armin and Mayer showed these two curves converging in the late Paleo
zoic (Fig. l1A). Furthermore, unlike the subsidence curves presented in 
this paper, the curves for the Panamint Range are remarkably linear after 
Early Cambrian time (Fig. liB) and therefore not interpretable according 
to the criteria set out above. The curvature shown depends strongly on the 
assumed position of the Proterozoic-Cambrian boundary. 

Implications for Basin Evolution 

Geologic observations and isotopic dating indicate that at least two 
discrete rifting events occurred in the western United States during Late 
Proterozoic and Early Cambrian time, one at -800 to 700 Ma (Stewart, 
1972, 1976; Armstrong and others, 1982; Evenchick and others, 1984; 
Devlin and others, 1985, 1988), and another at -590 Ma (Christie-Blick, 
1984; Bond and others, 1985). The earlier event appears to be too early to 
be reconciled with the results of quantitative subsidence analysis because 
only a residual thermal anomaly would remain from this event at 590 Ma. 
On the other hand, the apparent discrepancy between the small amount of 
observed upper-crustal extension associated with the latest Proterozoic and 
Early Cambrian event and the relatively rapid thermally driven subsidence 
characterizing the later Cambrian and Ordovician needs to be resolved. 
Extension ofthe upper crust during latest Proterozoic time may have been 
only a few percent because greater amounts of extension commonly result 
in significant tilting of fault blocks and in the development of angular 
unconformities (for example, Stewart, 1980; Barton and Wood, 1984; 
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Gibbs, 1984). In contrast, subsidence analysis suggests that the lithosphere 
as a whole was extended by at least several tens of percent and possibly as 
much as 100% (apparent f3 factors close to 2 in Fig. 5), although in detail 
such estimates are model dependent and require assumptions about the 
mechanism and duration of extension, the time of oriset of thermal subsid
ence, and the flexural rigidity of the lithosphere. 

Three hypotheses are suggested to reconcile this apparent incon
sistency between regional lithospheric thinning and the absence of 
appreciable evidence for upper crustal extension after deposition of the 
Noonday Dolomite. One idea is that the lack of evidence for crustal 
extension is due to limited exposure of rocks of Late Proterozoic and Early 
Cambrian age (Levy and Christie-BIick, 1989). Existing exposures tend to 
be aligned in a north-south direction, approximately parallel to the ex
pected preferred orientation of Late Proterozoic normal faults, and out
crops of specific units tend to be small in comparison with the typical 
spacing of major normal faults in extensional terranes (2-40 km; Hamilton 
and Myers, 1966; de Charpal and others, 1978; Stewart, 1978; Hauge and 
others, 1987; Rosendahl, 1987). The existence of Late Proterozoic faults is 
also likely to be obscured by Mesoroic and Cenozoic deformation. Normal 
faulting is commonly accompanied by the tilting offault blocks and by the 
local development of angular unconformities at the contact between pre
rift and syn-rift deposits, within the syn-rift section, and between syn-rift 
and post-rift strata (Evans and Parkinson, 1983; Harding, 1984; Hutchin
son and others, 1986). The lack of obvious discordance within the Late 
Proterozoic and Early Cambrian stratigraphy at most localities in the 
western United States, however, may also be due in part to limited 
exposure. 

A second explanation for the lack of evidence for significant crustal 
extension after deposition of the Noonday Dolomite is that the lithosphere 
may have extended in a heterogeneous manner, possibly in association 
with regional detachment faults. Detachment models, in which extension 
in the upper and lower lithosphere is geographically partitioned, permit the 
development of considerable post-rift subsidence even in areas for which 
there is little evidence for extension within the upper crust (Wernicke, 
1985; Lister and others, 1986; Kusznir and others, 1987; Buck and others, 
1988; Lister and Davis, 1989). For sections to balance on a regional scale, 
equivalent amounts of extension must be accommodated at all structural 
levels. This can be achieved in the western United States if relatively large 
amounts of extension in the lower crust and upper mantle beneath Utah 
and Idaho were balanced at an upper-crustallevel in central and western 
Nevada near the Paleozoic edge of the continent, where evidence for 
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Figure 11. A. Tectonic subsidence curve from the Panamint Range (replotted from Armin and Mayer, 1983). Breaks in the curves 
represent unconformities in the stratigraphic record. B. Comparison of tectonic subsidence curves from the Nopah Range (this study) and the 
Panamint Range (Armin and Mayer, 1983; replotted at the same scale as the Nopah Range) from the base of the Middle Cambrian to the 
Silurian. Note the lack of any curvature in the Rl curve from the Panamint Range. 
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extension was either rel'noved by continental separation in Early Cambrian 
time or hidden beneath the younger Paleozoic orogens (Christie-Blick and 
Levy, 1988, 1989a). The effect of a detachinent fault soling below the crust 
is to produce significant uplift abOve areas of deep extension through the 
replacement of cooler lithospheric mantle by warmer lithospheric mantle 
(Kusznir and others, 1987). Since physical stratigraphic observations indi
cate only minimal uplift in the western United States during Late Proter
ozoic to Early Cambrian time, any detachment or detachments would 
have dipPed to the east and soled into the lower crust (Christie-Blick and 
Levy, 1989a). 

A third hypothesis is that some or all of the localities studied are 
located continentward of the hinge zone between stretched and un
stretched lithosphere and that observed post-rift subsidence may be due in 
part to flexural loading by sediments that accumulated basin ward of the 
hinge zont:. A possible test of this hypothesis is to obtain more reliable 
stratigraphic data basinward of the Funeral, Nopah, and Spring Mountains 
(Fig. 3fFor example, if the true stratigraphic thickness in the Inyo Moun
tains is significantly greater than that preserved, it may be possible to show 
that this locality is not within the flexural wedge. On the other hand, if 
stratigfllphic thicknesses do not increase laterally toward the edge of the 
cOIitinent, it may be pOssible to argue that none of the lOcalities studied is 
within the flexural wedge. In either case, the estimated maximum age of 
onset of .thermal subsidence would still be valid. In fact, the estimated age 
of onsetofthermal subsidence is likely to be overestimated because thicker 
stratigraphic. sections imply more rapid subsidence, and hence a better
constrained To. 

Ongoing research is aimed at testing these ideas. In spite of analytical 
difficulties and small samples, we hope that eventrially it will be possible to 
calibrate the Proterozoic stratigraphic section by means of U-Pb geochrO
nology. In addition, subsidence analysis will be undertaken in two dimen
sions along palinspastically restored. transects (based on Levy and 
Christie-Blick, 1989) to assess the role of flexure and to obtain better 
constraints on mechanisms of extension. 

CONCLUSIONS 

Tectonic subsidence analysis of the Cambrian and Ordovician strata 
acroSs the miogeocline in eastern California and southern Nevada indicates 
that subsidence decayed exponentially, consiStent with a thermal mecha
nism of subsidence. The age of initiation of thermally driven subsidence, 
as determined by the analysis, is between 590 and 545 Ma. These results 
are based on the geologic time Scale of Harlanci and others (1982) and are 
in agreement with studies from elsewhere in the Cordillera (Bond and 
others, 1983, 1985; Bond and Kominz, 1984). 

We have evaluated potential sources of error in the analytical proce
dures and have found that predictions of the age of onset of thermal 
subsidence are sound in view of the range of our geologic assumptions. 
The sensitivity of the subsidence analysis to the Cambrian-Ordovician 
time scale was assessed and the predictions of the subsidence analysis were 
found to vary in a predicta.ble manner with respect to the continual fine
tuning of the time scale. Nonetheless, likely uncertainties in the time scale 
do not significantly affect the estimate of the timing of onset of thermal 
subsidence. 

Although the most convincing geologic evidence for crustal extension 
is in rocks older than ~ 700 Ma, a number of geologic observations suggest 
that crustal extension may have continued into Cambrian time, as indi
cated by the subsidence analysis. Three hypOtheses have been presented to 
reconcile the apparent discrepancy between the lack of appreciable evi
dence for upper-crustal extension in latest Proterozoic and Early Cambrian 
time and the rapid thermal subsidence characterizing the early Paleozoic. 
(1) Much of the critical evidence for upper-crustal extension is not pre
served in the limited exposures of latest Proterozoic and Lower Cambrian 
strata. (2) The lithosphere may have been thinned regionally after deposi-

tion of the Noonday Dolomite in assoclatlOn with one or more 
east-dipping detachments. (3) Some or all of the localities are 
continentward of the hinge zone, and the observed subsidence is due to 
flexural loading in an adjacent basin to the west. 

A final result from the tectonic subsidence analysis is that the long
term Cambrian-Ordovician eustatic signal evident in other parts of North 
America is also present in our data. A misfit between the Rl curves and 
the exponential curves, consistent with a relative highstand in the Late 
Cambrian to Early Ordovician, cannot be eliminated from the results by 
including likely errors in stratigraphic thickness and age control. 
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