4 research outputs found

    Food habits of wintering double-crested cormorants in the Mississippi Delta

    Get PDF
    Given its ubiquity, it is not surprising that agriculture, including fin fish aquaculture, contributes to food webs worldwide and is used by numerous wildlife for foraging and meeting other needs. Double-crested Cormorants (Phalacrocorax auritus) impact United States commercial aquaculture and are considered the primary avian predator in catfish (Ictalurus spp.) aquaculture facilities in the Mississippi Delta. Recent changes in aquaculture practices, regulatory policies, and decreased overall hectares in production prompted this study that assessed cormorant consumption of catfish in relation to their night roosts through surveys and diet analysis. Cormorants were collected from night roosts from October through April 2016–2018 (n=69 collections). On average, catfish constituted 33% of a cormorant\u27s overall diet, which is less than reported in previous studies. There was no statistical difference between consumption of channel (I. punctatus) and hybrid catfish (I. punctatus x I. furcatus) based on biomass estimates, and the greatest consumption of catfish occurred in the months of February and March. The best fit model for predicting catfish consumption was the cubic polynomial function of the area of catfish aquaculture within a 30.6 km forage buffer of a night roost. Our findings will inform wildlife managers about relationships between cormorant night roost locations and consumption of catfish and aid decision making with respect to cormorant management. Despite cormorants having shifted consumption to naturally occurring fish species associated with changes to aquaculture, aquaculture remains an important part of regional food webs

    Predicting consistent foraging ecologies of migrating waterbirds: Using stable isotope and parasite measurements as indicators of landscape use

    Get PDF
    The emergence of novel human pathogens is frequently linked with zoonotic events and human-wildlife interactions that promote disease transmission. Consequently, surveillance of wildlife populations for candidate diseases that could spread to humans is beneficial, but requires widespread collections of numerous samples. A legitimate means to acquire large sample sizes of waterfowl is through cooperation between researchers and hunters, who also work in concert with natural resource managers, landowners, and agricultural entities -e.g., aquaculture facilities. In addition to understanding the occurrence and spread of parasites and pathogens by birds, these samples can be used to answer questions about the ecology of various waterbird species. Body mass and morphometric data on hunter-donated specimen are useful for understanding bird condition and other dynamics of birds; however, when breast meat is removed prior to the acquisition of specimen weight, samples might not be as desirable. Here, we evaluate the utility of data obtained from a bird species that might be targeted by hunters and subsequently used to learn about their disease dynamics. Lesser Scaup (Aythya affinis) collected at aquaculture facilities were assessed for their stable isotope concentrations and parasites communities to learn about the birds’ foraging ecology. Discriminant analyses designed to classify birds by the aquaculture pond type from which they were collected included isotope data, Principal Components derived from parasite community data of 7 types, and birds’ body mass. We compared these to Double-crested Cormorants (Nannopterum auritum) feeding on catfish and found the two waterbird species exhibited different infracommunities of parasites Furthermore, some scaup demonstrated fish aquaculture pond type fidelity. Bird body mass was an important metric to include in analytical models when all parasite datatypes were not available. However, the combination of stable isotope concentrations and parasite infracommunity data (that includes prevalence, abundance, volume, and energy use) in models resulted in host ecology differentiation equal or better than models where bird body mass was included. Hunter-derived samples should be encouraged as a means for sample acquisition and be considered as an approach for aquaculture-wildlife conflict management as the information that can be obtained through these samples is multifaceted

    Depredation Impact of Double-Crested Cormorants (Phalacrocorax auritus) on Commercial Catfish Production in the Mississippi Delta

    Get PDF
    Double-crested Cormorants (Phalacrocorax auritus) impact United States commercial aquaculture and are considered the greatest avian predators on catfish (Ictalurus spp.) aquaculture facilities. Cormorants are especially problematic in the Delta region in western Mississippi, where catfish production is concentrated providing ideal wintering and foraging areas. Although cormorant/aquaculture dynamics have been studied, recent changes in aquaculture practices, regulatory policies, and decreased overall hectares in production merit contemporary research. Therefore, we estimated abundance and distribution of cormorants at their night roosts and assessed diet related to catfish consumption. Aerial surveys of cormorant night roosts were flown from October through April, 2016-2018. Following each survey, three active night roosts were randomly selected for harvesting cormorants for later necropsy and stomach contents assessment. We completed 25 total surveys and counted an average of 23,379 cormorants (range 5,026 to 40,535) pooled over years (corrected for observer and method bias). A total of 728 cormorants from 27 different night roosts were collected across years. Survey count models estimated 4.2 and 5 million cormorant forage days in the Delta during winters 2016-2017 and 2017-2018, respectively. Throughout the study, catfish comprised 33% of the prey biomass detected; shad (Dorosoma spp.) also were dominant (58%) prey. Evidence suggests that the area of catfish aquaculture surrounding a night roost within a 30.6-km forage buffer is an important predictor for a bird’s relative amount of catfish consumption. These results will inform wildlife managers regarding relationships between cormorant night roost locations in the Delta and disproportionate consumption of catfish, enhancing techniques to reduce fish losses on aquaculture facilities

    Principal economic effects of cormorant predation on catfish farms

    Get PDF
    Substantial economic losses of farmed catfish to fish-eating birds such as the double-crested cormorant, Phalacrocorax auritus, continue to be reported on U.S. catfish farms. An economic analysis was conducted of the on-farm effects of both the increased expenditures to scare fish-eating birds from catfish farms and of the value of the catfish that were consumed by cormorants. A survey was conducted of U.S. catfish farmers in the Delta region of Mississippi and Arkansas, to obtain farm-level data on expenditures to scare birds. Estimations of the lost revenue from catfish consumed by cormorants were developed from a concurrent study on cormorant distribution, abundance, and diet in the region. The economic effects of bird predation in terms of both fish consumption and management costs were evaluated across three farm sizes and nine catfish production practices. Catfish farmers spent on average 704/ha±704/ha ± 394/ha to scare birds, making bird-scaring costs one of the top five costs of raising catfish. The greatest cost components of scaring birds were manpower (39% of all bird-scaring costs) and the variable and fixed costs of trucks used to scare birds (34% of all bird-scaring costs). Losses were greater on hybrid than channel catfish fingerling ponds. Industry-wide, the value of catfish losses averaged 47.2million(rangeof47.2 million (range of 25.8–65.4million).Totaldirecteconomiceffects(includingboththeincreasedcoststoscarebirdsandtherevenuelostfromfishconsumedbycormorantsdespitebird−scaringattempts)averaged65.4 million). Total direct economic effects (including both the increased costs to scare birds and the revenue lost from fish consumed by cormorants despite bird-scaring attempts) averaged 64.7 million (ranging from 33.5to33.5 to 92.6 million). Profitability improved by 4% to 23% across the farm size/production strategies analyzed upon removal of the economic effects from bird predation, with greater effects occurring on smaller-scale farms. One-third of the farm size and production scenarios analyzed changed from being unprofitable to showing a profit in the absence of such negative economic effects associated with bird depredation. Overall, the combined effects of increased farm expenditures to scare birds from farms and the value of the catfish lost to predation by cormorants caused substantial negative economic effects on catfish farms
    corecore