72 research outputs found
Partitioning of phenanthrene by root cell walls and cell wall fractions of wheat (Triticum aestivum L.)
Plant cells have been reported to play an important role in the uptake of organic contaminants. This study was undertaken to provide an insight into the role of the root cell walls and their subfractions on sorption of phenanthrene to roots of wheat (Triticum aestivum L.). Root cell walls were isolated and further sequentially fractioned by removing pectin, hemicellulose one, and hemicellulose two. They were characterized by elemental analysis, Fourier transform infrared spectroscopy, and solid-state (13)C NMR. Root cell walls had a greater proportion of aromatic carbon and exhibited a lower polarity than the bulk roots. There was a stepwise increase in aromatic carbon content and a decrease in polarity following the sequential fractionation. The sorption affinity of phenanthrene increased gradually following the sequential extraction of root cells. A significant positive correlation between the sorption affinity K(OC) values and the aromatic carbon contents (r(2) = 0.896, p < 0.01) and a negative correlation between the sorption affinity K(OC) values and polarity ((O + N)/C) of root cell fractions (r(2) = 0.920, p < 0.01) were obtained. Improved modeling was achieved for phenanthrene sorption by involving the contribution of root cell walls as a source of root carbohydrates instead of using root lipids alone, which further confirms the significant contribution of root cell walls to phenanthrene sorption on wheat roots. The results provide evidence for the importance of the root cell walls in the partitioning of phenanthrene by plant roots
Behavior of decabromodiphenyl ether (BDE-209) in the soil-plant system: uptake, translocation, and metabolism in plants and dissipation in soil
Deca-bromodiphenyl ether (BDE-209) is the major component of the commercial deca-BDE flame retardant. There is increasing concern over BDE-209 due to its increasing occurrence in the environment and in humans. In this study the behavior of BDE-209 in the soil-plant system was investigated. Accumulation of BDE-209 was observed in the roots and shoots of all the six plant species examined, namely ryegrass, alfalfa, pumpkin, summer squash, maize, and radish. Root uptake of BDE-209 was positively correlated with root lipid content (P < 0.001, R(2) = 0.81). The translocation factor (TF, C(shoot)/C(root)) of BDE-209 was inversely related to its concentration in roots. Nineteen lower brominated (di- to nor a-) PBDEs were detected in the soil and plant samples and five hydroxylated congeners were detected in the plant samples, indicating debromination and hydroxylation of BDE-209 in the soil-plant system. Evidence of a relatively higher proportion of penta- through di-BDE congeners in plant tissues than in the soil indicates that there is further debromination of PBDEs within plants or low brominated PBDEs are more! readily taken up by plants. A significant negative correlation between the residual BDE-209 concentration in soil and the soil microbial biomass measured as the total phospholipid fatty, acids (PLFAs) (P < 0.05, R(2) = 0.74) suggests that microbial metabolism and degradation contribute to BDE-209 dissipation in soil. These results provide important information about the behavior of BDE-209 in the soil-plant system
Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure
The effects of an arbuscular mycorrhizal (AM) fungus (Glomus etunicatum) on atrazine dissipation, soil phosphatase and dehydrogenase activities and soil microbial community structure were investigated. A compartmented side-arm ('cross-pot') system was used for plant cultivation. Maize was cultivated in the main root compartment and atrazine-contaminated soil was added to the side-arms and between them 650 or 37 mu m nylon mesh was inserted which allowed mycorrhizal roots or extraradical mycelium to access atrazine in soil in the side-arms. Mycorrhizal roots and extraradical mycelium increased the degradation of atrazine in soil and modified the soil enzyme activities and total soil phospholipid fatty acids (PLFAs). Atrazine declined more and there was greater stimulation of phosphatase and dehydrogenase activities and total PLFAs in soil in the extraradical mycelium compartment than in the mycorrhizal root compartment when the atrazine addition rate to soil was 5.0 mg kg(-1). Mycelium had a more important influence than mycorrhizal roots on atrazine degradation. However, when the atrazine addition rate was 50.0 mg kg(-1). atrazine declined more in the mycorrhizal root compartment than in the extraradical mycelium compartment, perhaps due to inhibition of bacterial activity and higher toxicity to AM mycelium by atrazine at higher concentration. Soil PLFA profiles indicated that the AM fungus exerted a pronounced effect on soil microbial community structure. (C) 2009 Elsevier Ltd. All rights reserved
Height Systems and Vertical Datums: a Review in the Australian Context
This paper reviews (without equations) the various definitions of height systems and vertical geodetic datum surfaces, together with their practical realisation for users in Australia. Excluding geopotential numbers, a height system is a one-dimensional coordinate system used to express the metric distance (height) of a point from some reference surface. Its definition varies according to the reference surface chosen and the path along which the height is measured. A vertical geodetic datum is the practical realisation of a height system and its reference surface for users, nominally tied to mean sea level. In Australia, the normal-orthometric height system is used, which is embedded in the Australian Height Datum (AHD). The AHD was realised by the adjustment of ~195,000 km of spirit-levelling observations fixed to limited-term observations of mean sea level at multiple tide-gauges. The paper ends by giving some explanation of the problems with the AHD and of the differences between the AHD and the national geoid model, pointing out that it is preferable to recompute the AHD
Error sources and data limitations for the prediction ofsurface gravity: a case study using benchmarks
Gravity-based heights require gravity values at levelled benchmarks (BMs), whichsometimes have to be predicted from surrounding observations. We use EGM2008 andthe Australian National Gravity Database (ANGD) as examples of model and terrestrialobserved data respectively to predict gravity at Australian national levelling network(ANLN) BMs. The aim is to quantify errors that may propagate into the predicted BMgravity values and then into gravimetric height corrections (HCs). Our results indicatethat an approximate ±1 arc-minute horizontal position error of the BMs causesmaximum errors in EGM2008 BM gravity of ~ 22 mGal (~55 mm in the HC at ~2200 melevation) and ~18 mGal for ANGD BM gravity because the values are not computed atthe true location of the BM. We use RTM (residual terrain modelling) techniques toshow that ~50% of EGM2008 BM gravity error in a moderately mountainous regioncan be accounted for by signal omission. Non-representative sampling of ANGDgravity in this region may cause errors of up to 50 mGals (~120 mm for the Helmertorthometric correction at ~2200 m elevation). For modelled gravity at BMs to beviable, levelling networks need horizontal BM positions accurate to a few metres, whileRTM techniques can be used to reduce signal omission error. Unrepresentative gravitysampling in mountains can be remedied by denser and more representative re-surveys,and/or gravity can be forward modelled into regions of sparser gravity
IODP Expeditions 309 and 312 drill an intact section of upper oceanic basement into gabbros
The Integrated Ocean Drilling Program's (IODP) Expeditions 309 and 312 successfully completed the first sampling of an intact section of upper oceanic crust, through lavas and the sheeted dikes into the uppermost gabbros. Hole 1256D, which was initiated on the Ocean Drilling Program's (ODP) Leg 206, now penetrates to >1500 mbsf and >1250 m sub-basement. The first gabbroic rocks were encountered at 1407 mbsf. Below this, the hole penetrates 3c100 m into a complex zone of fractionated gabbros intruded into contact metamorphosed dikes
- …