74 research outputs found

    Topological Insulators by Topology Optimization

    Get PDF
    An acoustic topological insulator (TI) is synthesized using topology optimization, a free material inverse design method. The TI appears spontaneously from the optimization process without imposing requirements on the existence of pseudo spin-1/2 states at the TI interface edge, or the Chern number of the topological phases. The resulting TI is passive; consisting of acoustically hard members placed in an air background and has an operational bandwidth of ≈\approx12.5\% showing high transmission. Further analysis demonstrates confinement of more than 99\% of the total field intensity in the TI within at most six lattice constants from the TI interface. The proposed design hereby outperforms a reference from recent literature regarding energy transmission, field confinement and operational bandwidth.Comment: 6 pages, 5 figure

    Designing Photonic Topological Insulators with Quantum-Spin-Hall Edge States using Topology Optimization

    Get PDF
    Designing photonic topological insulators is highly non-trivial because it requires inversion of band symmetries around the band gap, which was so far done using intuition combined with meticulous trial and error. Here we take a completely different approach: we consider the design of photonic topological insulators as an inverse design problem and use topology optimization to maximize the transmission through an edge mode with a sharp bend. Two design domains composed of two different, but initially identical, C6v_\text{6v}-symmetric unit cells define the geometrical design problem. Remarkably, the optimization results in a photonic topological insulator reminiscent of the shrink-and-grow approach to quantum-spin-Hall photonic topological insulators but with notable differences in the topology of the crystal as well as qualitatively different band structures and with significantly improved performance as gauged by the band-gap sizes, which are at least 50 \% larger than previous designs. Furthermore, we find a directional beta factor exceeding 99 \%, and very low losses for sharp bends. Our approach allows for the introduction of fabrication limitations by design and opens an avenue towards designing PTIs with hitherto unexplored symmetry constraints.Comment: 7 pages, 5 figure

    Inverse design in photonics by topology optimization: tutorial

    Full text link
    Topology optimization methods for inverse design of nano-photonic systems have recently become extremely popular and are presented in various forms and under various names. Approaches comprise gradient and non-gradient based algorithms combined with more or less systematic ways to improve convergence, discreteness of solutions and satisfaction of manufacturing constraints. We here provide a tutorial for the systematic and efficient design of nano-photonic structures by Topology Optimization (TopOpt). The implementation is based on the advanced and systematic approaches developed in TopOpt for structural optimization during the last three decades. The tutorial presents a step-by-step guide for deriving the continuous constrained optimization problem forming the foundation of the Topology Optimization method, using a cylindrical metalens design problem as an example. It demonstrates the effect and necessity of applying a number of auxiliary tools in the design process in order to ensure good numerical modelling practice and to achieve physically realisable designs. Application examples also include an optical demultiplexer.Comment: 8 figures, 19 page

    Maximizing the quality factor to mode volume ratio for ultra-small photonic crystal cavities

    Get PDF
    Small manufacturing-tolerant photonic crystal cavities are systematically designed using topology optimization to enhance the ratio between quality factor and mode volume, Q/V. For relaxed manufacturing tolerance, a cavity with bow-tie shape is obtained which confines light beyond the diffraction limit into a deep-subwavelength volume. Imposition of a small manufacturing tolerance still results in efficient designs, however, with diffraction-limited confinement. Inspired by numerical results, an elliptic ring grating cavity concept is extracted via geometric fitting. Numerical evaluations demonstrate that for small sizes, topology-optimized cavities enhance the Q/V-ratio by up to two orders of magnitude relative to standard L1 cavities and more than one order of magnitude relative to shape-optimized L1 cavities. An increase in cavity size can enhance the Q/V-ratio by an increase of the Q-factor without significant increase of V. Comparison between optimized and reference cavities illustrates that significant reduction of V requires big topological changes in the cavity

    Topology Optimization of Surface-enhanced Raman Scattering Substrates

    Full text link
    Surface-enhanced Raman spectroscopy is a powerful and versatile sensing method with a detection limit down to the single molecule level. In this article, we demonstrate how topology optimization (TopOpt) can be used for designing surface enhanced Raman scattering (SERS) substrates adhering to realistic fabrication constraints. As an example, we experimentally demonstrated a SERS enhancement factor of 5*10e4 for the 604 cm-1 Raman line of rhodamine 6G using metal nanostructures with a critical dimension of 20 nm. We then show that, by relaxing the fabrication constraints, TopOpt may be used to design SERS substrates with orders of magnitude larger enhancement factor. The results validate topology optimization as an effective method for engineering nanostructures with optimal performance and fabrication tolerance.Comment: 12 page

    Designing Structures that Maximize Spatially Averaged Surface-Enhanced Raman Spectra

    Full text link
    We present a general framework for inverse design of nanopatterned surfaces that maximize spatially averaged surface-enhanced Raman (SERS) spectra from molecules distributed randomly throughout a material or fluid, building upon a recently proposed trace formulation for optimizing incoherent emission. This leads to radically different designs than optimizing SERS emission at a single known location, as we illustrate using several 2D design problems addressing effects of hot-spot density, angular selectivity, and nonlinear damage. We obtain optimized structures that perform about 4 times better than coating with optimized spheres or bowtie structures and about 20 times better when the nonlinear damage effects are included
    • …
    corecore