28 research outputs found

    White Matter Lesion Progression: Genome-Wide Search for Genetic Influences

    Get PDF
    White matter lesion (WML) progression on magnetic resonance imaging (MRI) is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium

    Pocket-Leitlinie: Diagnose und Therapie der peripheren arteriellen Erkrankung (Version 2017)

    No full text
    Diese Pocket-Leitlinie ist eine von der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. (DGK) übernommene Stellungnahme der European Society of Cardiology (ESC) und der European Society for Vascular Surgery (ESVS), die den gegenwärtigen Erkenntnisstand wiedergibt und Ärzten die Entscheidungsfindung zum Wohle ihrer Patienten erleichtern soll. Die Leitlinie ersetzt nicht die ärztliche Evaluation des individuellen Patienten und die Anpassung der Diagnostik und Therapie an dessen spezifische Situation. Die Pocket-Leitlinie enthält gekennzeichnete Kommentare der Autoren der Pocket- Leitlinie, die deren Einschätzung darstellen und von der Deutschen Gesellschaft für Kardiologie getragen werden. Die Erstellung dieser Leitlinie ist durch eine systematische Aufarbeitung und Zusammenstellung der besten verfügbaren wissenschaftlichen Evidenz gekennzeichnet. Das vorgeschlagene Vorgehen ergibt sich aus der wissenschaftlichen Evidenz, wobei randomisierte, kontrollierte Studien bevorzugt werden. Der Zusammenhang zwischen der jeweiligen Empfehlung und dem zugehörigen Evidenzgrad ist gekennzeichnet

    Porcine Circoviruses and Herpesviruses Are Prevalent in an Austrian Game Population

    No full text
    During the annual hunt in a privately owned Austrian game population in fall 2019 and 2020, 64 red deer (Cervus elaphus), 5 fallow deer (Dama dama), 6 mouflon (Ovis gmelini musimon), and 95 wild boars (Sus scrofa) were shot and sampled for PCR testing. Pools of spleen, lung, and tonsillar swabs were screened for specific nucleic acids of porcine circoviruses. Wild ruminants were additionally tested for herpesviruses and pestiviruses, and wild boars were screened for pseudorabies virus (PrV) and porcine lymphotropic herpesviruses (PLHV-1-3). PCV2 was detectable in 5% (3 of 64) of red deer and 75% (71 of 95) of wild boar samples. In addition, 24 wild boar samples (25%) but none of the ruminants tested positive for PCV3 specific nucleic acids. Herpesviruses were detected in 15 (20%) ruminant samples. Sequence analyses showed the closest relationships to fallow deer herpesvirus and elk gammaherpesvirus. In wild boars, PLHV-1 was detectable in 10 (11%), PLHV-2 in 44 (46%), and PLHV-3 in 66 (69%) of animals, including 36 double and 3 triple infections. No pestiviruses were detectable in any ruminant samples, and all wild boar samples were negative in PrV-PCR. Our data demonstrate a high prevalence of PCV2 and PLHVs in an Austrian game population, confirm the presence of PCV3 in Austrian wild boars, and indicate a low risk of spillover of notifiable animal diseases into the domestic animal population

    Protective efficacy and safety of liver stage attenuated malaria parasites

    No full text
    During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(-) or uis3(-) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(-) parasites protected better than uis3(-) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy

    Gelatin-Modified Calcium/Strontium Hydrogen Phosphates Stimulate Bone Regeneration in Osteoblast/Osteoclast Co-Culture and in Osteoporotic Rat Femur Defects—In Vitro to In Vivo Translation

    No full text
    The development and characterization of biomaterials for bone replacement in case of large defects in preconditioned bone (e.g., osteoporosis) require close cooperation of various disciplines. Of particular interest are effects observed in vitro at the cellular level and their in vivo representation in animal experiments. In the present case, the material-based alteration of the ratio of osteoblasts to osteoclasts in vitro in the context of their co-cultivation was examined and showed equivalence to the material-based stimulation of bone regeneration in a bone defect of osteoporotic rats. Gelatin-modified calcium/strontium phosphates with a Ca:Sr ratio in their precipitation solutions of 5:5 and 3:7 caused a pro-osteogenic reaction on both levels in vitro and in vivo. Stimulation of osteoblasts and inhibition of osteoclast activity were proven during culture on materials with higher strontium content. The same material caused a decrease in osteoclast activity in vitro. In vivo, a positive effect of the material with increased strontium content was observed by immunohistochemistry, e.g., by significantly increased bone volume to tissue volume ratio, increased bone morphogenetic protein-2 (BMP2) expression, and significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio. In addition, material degradation and bone regeneration were examined after 6 weeks using stage scans with ToF-SIMS and µ-CT imaging. The remaining material in the defects and strontium signals, which originate from areas exceeding the defect area, indicate the incorporation of strontium ions into the surrounding mineralized tissue. Thus, the material inherent properties (release of biologically active ions, solubility and degradability, mechanical strength) directly influenced the cellular reaction in vitro and also bone regeneration in vivo. Based on this, in the future, materials might be synthesized and specifically adapted to patient-specific needs and their bone status
    corecore