6 research outputs found

    The ecological niche of the consortium " Pelochromatium roseum "

    No full text
    A dense accumulation of the phototrophic consortium “Pelochromatium roseum” in a small, eutrophic, freshwater lake (Dagowsee, Brandenburg, Germany) was investigated. Within the chemocline, the number of epibionts of the consortia represented up to 19% of the total number of bacteria. Per “P. roseum” a mean value of 20 epibionts was determined. Similar to other aquatic habitats, consortia in the Dagowsee were found only at low light intensities (< 7 μmol quanta m–2 s–1) and low sulfide concentrations (0–100 μM). In dialysis cultures of “P. roseum”, bacterial cells remained in a stable association only when incubated at light intensities between 5 and 10 μmol quanta m–2 s–1. Intact consortia from natural samples had a buoyant density of 1046.8 kg m–3, which was much higher than that of ambient chemocline water (995.8 kg m–3). Under environmental conditions and without motility, this density difference would result in rapid sedimentation of consortia toward the lake bottom. Our results indicate that (1) consortia are adapted to a very narrow regime of light intensities and sulfide concentrations, (2) motility and tactic responses must be of ecological significance for the colonization of the free water column of lakes, and (3) phototrophic growth of consortia can be explained only by a cycling of sulfur species in the chemocline, possibly within the consortia themselves

    Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity

    No full text
    Interpretation of whole-genome sequencing (WGS) data for foodborne outbreak investigations is complex, as the genetic diversity within processing plants and transmission events need to be considered. In this study, we analyzed 92 food-associated Listeria monocytogenes isolates by WGS-based methods. We aimed to examine the genetic diversity within meat and fish production chains and to assess the applicability of suggested thresholds for clustering of potentially related isolates. Therefore, meat-associated isolates originating from the same samples or processing plants as well as fish-associated isolates were analyzed as distinct sets. In silico serogrouping, multilocus sequence typing (MLST), core genome MLST (cgMLST), and pangenome analysis were combined with screenings for prophages and genetic traits. Isolates of the same subtypes (cgMLST types (CTs) or MLST sequence types (STs)) were additionally compared by SNP calling. This revealed the occurrence of more than one CT within all three investigated plants and within two samples. Analysis of the fish set resulted in predominant assignment of isolates from pangasius catfish and salmon to ST2 and ST121, respectively, potentially indicating persistence within the respective production chains. The approach not only allowed the detection of distinct subtypes but also the determination of differences between closely related isolates, which need to be considered when interpreting WGS data for surveillance
    corecore