260 research outputs found
Alternative Splicing Events Identified in Human Embryonic Stem Cells and Neural Progenitors
Human embryonic stem cells (hESCs) and neural progenitor (NP) cells are excellent models for recapitulating early neuronal development in vitro, and are key to establishing strategies for the treatment of degenerative disorders. While much effort had been undertaken to analyze transcriptional and epigenetic differences during the transition of hESC to NP, very little work has been performed to understand post-transcriptional changes during neuronal differentiation. Alternative RNA splicing (AS), a major form of post-transcriptional gene regulation, is important in mammalian development and neuronal function. Human ESC, hESC-derived NP, and human central nervous system stem cells were compared using Affymetrix exon arrays. We introduced an outlier detection approach, REAP (Regression-based Exon Array Protocol), to identify 1,737 internal exons that are predicted to undergo AS in NP compared to hESC. Experimental validation of REAP-predicted AS events indicated a threshold-dependent sensitivity ranging from 56% to 69%, at a specificity of 77% to 96%. REAP predictions significantly overlapped sets of alternative events identified using expressed sequence tags and evolutionarily conserved AS events. Our results also reveal that focusing on differentially expressed genes between hESC and NP will overlook 14% of potential AS genes. In addition, we found that REAP predictions are enriched in genes encoding serine/threonine kinase and helicase activities. An example is a REAP-predicted alternative exon in the SLK (serine/threonine kinase 2) gene that is differentially included in hESC, but skipped in NP as well as in other differentiated tissues. Lastly, comparative sequence analysis revealed conserved intronic cis-regulatory elements such as the FOX1/2 binding site GCAUG as being proximal to candidate AS exons, suggesting that FOX1/2 may participate in the regulation of AS in NP and hESC. In summary, a new methodology for exon array analysis was introduced, leading to new insights into the complexity of AS in human embryonic stem cells and their transition to neural stem cells
Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells.
Our understanding of Alzheimer's disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer's disease, both caused by a duplication of the amyloid-β precursor protein gene (APP; termed APP(Dp)), two with sporadic Alzheimer's disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APP(Dp) patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-β(1-40), phospho-tau(Thr 231) and active glycogen synthase kinase-3β (aGSK-3β). Neurons from APP(Dp) and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with β-secretase inhibitors, but not γ-secretase inhibitors, caused significant reductions in phospho-Tau(Thr 231) and aGSK-3β levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-β, in GSK-3β activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer's disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer's disease, even though it can take decades for overt disease to manifest in patients
Staggered versus overlap fermions: a study in the Schwinger model with
We study the scalar condensate and the topological susceptibility for a
continuous range of quark masses in the Schwinger model with
dynamical flavors, using both the overlap and the staggered discretization. At
finite lattice spacing the differences between the two formulations become
rather dramatic near the chiral limit, but they get severely reduced, at the
coupling considered, after a few smearing steps.Comment: 15 pages, 7 figures, v2: 1 ref corrected, minor change
Variational Mass Perturbation Theory for Light-Front Bound-State Equations
We investigate the mesonic light-front bound-state equations of the 't Hooft
and Schwinger model in the two-particle, i.e. valence sector, for small fermion
mass. We perform a high precision determination of the mass and light-cone wave
function of the lowest lying meson by combining fermion mass perturbation
theory with a variational approach. All calculations are done entirely in the
fermionic representation without using any bosonization scheme. In a
step-by-step procedure we enlarge the space of variational parameters. For the
first two steps, the results are obtained analytically. Beyond that we use
computer algebraic and numerical methods. We achieve good convergence so that
the calculation of the meson mass squared can be extended to third order in the
fermion mass. Within the numerical treatment we include higher Fock states up
to six particles. Our results are consistent with all previous numerical
investigations, in particular lattice calculations. For the massive Schwinger
model, we find a small discrepancy (less than 2 percent) in comparison with
known bosonization results. Possible resolutions of this discrepancy are
discussed.Comment: some points clarified, representation straightened, to appear in
Phys. Rev. D, 31 pages, Latex, REVTeX, epsfig, 3 postscript figures include
Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk around PDS 70: Observations of the disk
We present high resolution H-band polarized intensity (PI; FWHM = 0."1: 14
AU) and L'-band imaging data (FWHM = 0."11: 15 AU) of the circumstellar disk
around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of
28 AU (0."2) up to 210 AU (1."5). In both images, a giant inner gap is clearly
resolved for the first time, and the radius of the gap is ~70 AU. Our data show
that the geometric center of the disk shifts by ~6 AU toward the minor axis. We
confirm that the brown dwarf companion candidate to the north of PDS 70 is a
background star based on its proper motion. As a result of SED fitting by Monte
Carlo radiative transfer modeling, we infer the existence of an optically thick
inner disk at a few AU. Combining our observations and modeling, we classify
the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the
analysis of L'-band imaging data, we put an upper limit mass of companions at
~30 to ~50MJ within the gap. Taking account of the presence of the large and
sharp gap, we suggest that the gap could be formed by dynamical interactions of
sub-stellar companions or multiple unseen giant planets in the gap.Comment: accepted by APJ
Loss of the Auxiliary α 2δ1 Voltage-Sensitive Calcium Channel Subunit Impairs Bone Formation and Anabolic Responses to Mechanical Loading
Voltage-sensitive calcium channels (VSCCs) influence bone structure and function, including anabolic responses to mechanical loading. While the pore-forming (α1) subunit of VSCCs allows Ca2+ influx, auxiliary subunits regulate the biophysical properties of the pore. The α2δ1 subunit influences gating kinetics of the α1 pore and enables mechanically induced signaling in osteocytes; however, the skeletal function of α2δ1 in vivo remains unknown. In this work, we examined the skeletal consequences of deleting Cacna2d1, the gene encoding α2δ1. Dual-energy X-ray absorptiometry and microcomputed tomography imaging demonstrated that deletion of α2δ1 diminished bone mineral content and density in both male and female C57BL/6 mice. Structural differences manifested in both trabecular and cortical bone for males, while the absence of α2δ1 affected only cortical bone in female mice. Deletion of α2δ1 impaired skeletal mechanical properties in both sexes, as measured by three-point bending to failure. While no changes in osteoblast number or activity were found for either sex, male mice displayed a significant increase in osteoclast number, accompanied by increased eroded bone surface and upregulation of genes that regulate osteoclast differentiation. Deletion of α2δ1 also rendered the skeleton insensitive to exogenous mechanical loading in males. While previous work demonstrates that VSCCs are essential for anabolic responses to mechanical loading, the mechanism by which these channels sense and respond to force remained unclear. Our data demonstrate that the α2δ1 auxiliary VSCC subunit functions to maintain baseline bone mass and strength through regulation of osteoclast activity and also provides skeletal mechanotransduction in male mice. These data reveal a molecular player in our understanding of the mechanisms by which VSCCs influence skeletal adaptation
Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2
Endosialin is a transmembrane glycoprotein selectively expressed in blood vessels and stromal fibroblasts of various human tumours. It has been functionally implicated in angiogenesis, but the factors that control its expression have remained unclear. As insufficient delivery of oxygen is a driving force of angiogenesis in growing tumours, we investigated whether hypoxia regulates endosialin expression. Here, we demonstrate that endosialin gene transcription is induced by hypoxia predominantly through a mechanism involving hypoxia-inducible factor-2 (HIF-2) cooperating with the Ets-1 transcription factor. We show that HIF-2 activates the endosialin promoter both directly, through binding to a hypoxia-response element adjacent to an Ets-binding site in the distal part of the upstream regulatory region, and indirectly, through Ets-1 and its two cognate elements in the proximal promoter. Our data also suggest that the SP1 transcription factor mediates responsiveness of the endosialin promoter to high cell density. These findings elucidate important aspects of endosialin gene regulation and provide a rational frame for future investigations towards better understanding of its biological significance
- …