203 research outputs found
Challenges of the next decade for the Asia Pacific region: 2010 International Conference in Bioinformatics (InCoB 2010)
The 2010 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia’s oldest bioinformatics organisation formed in 1998, was organized as the 9th International Conference on Bioinformatics (InCoB), Sept. 26-28, 2010 in Tokyo, Japan. Initially, APBioNet created InCoB as forum to foster bioinformatics in the Asia Pacific region. Given the growing importance of interdisciplinary research, InCoB2010 included topics targeting scientists in the fields of genomic medicine, immunology and chemoinformatics, supporting translational research. Peer-reviewed manuscripts that were accepted for publication in this supplement, represent key areas of research interests that have emerged in our region. We also highlight some of the current challenges bioinformatics is facing in the Asia Pacific region and conclude our report with the announcement of APBioNet’s 100 BioDatabases (BioDB100) initiative. BioDB100 will comply with the database criteria set out earlier in our proposal for Minimum Information about a Bioinformatics and Investigation (MIABi), setting the standards for biocuration and bioinformatics research, on which we will report at the next InCoB, Nov. 27 – Dec. 2, 2011 at Kuala Lumpur, Malaysia
Recommended from our members
Predicted mouse peroxisome-targeted proteins and their actual subcellular locations.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The import of most intraperoxisomal proteins is mediated by peroxisome targeting signals at their C-termini (PTS1) or N-terminal regions (PTS2). Both signals have been integrated in subcellular location prediction programs. However their present performance, particularly of PTS2-targeting did not seem fitting for large-scale screening of sequences. RESULTS: We modified an earlier reported PTS1 screening method to identify PTS2-containing mouse candidates using a combination of computational and manual annotation. For rapid confirmation of five new PTS2- and two previously identified PTS1-containing candidates we developed the new cell line CHO-perRed which stably expresses the peroxisomal marker dsRed-PTS1. Using CHO-perRed we confirmed the peroxisomal localization of PTS1-targeted candidate Zadh2. Preliminary characterization of Zadh2 expression suggested non-PPARalpha mediated activation. Notably, none of the PTS2 candidates located to peroxisomes. CONCLUSION: In a few cases the PTS may oscillate from "silent" to "functional" depending on its surface accessibility indicating the potential for context-dependent conditional subcellular sorting. Overall, PTS2-targeting predictions are unlikely to improve without generation and integration of new experimental data from location proteomics, protein structures and quantitative Pex7 PTS2 peptide binding assays
Predicted mouse peroxisome-targeted proteins and their actual subcellular locations
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The import of most intraperoxisomal proteins is mediated by peroxisome targeting signals at their C-termini (PTS1) or N-terminal regions (PTS2). Both signals have been integrated in subcellular location prediction programs. However their present performance, particularly of PTS2-targeting did not seem fitting for large-scale screening of sequences. Results We modified an earlier reported PTS1 screening method to identify PTS2-containing mouse candidates using a combination of computational and manual annotation. For rapid confirmation of five new PTS2- and two previously identified PTS1-containing candidates we developed the new cell line CHO-perRed which stably expresses the peroxisomal marker dsRed-PTS1. Using CHO-perRed we confirmed the peroxisomal localization of PTS1-targeted candidate Zadh2. Preliminary characterization of Zadh2 expression suggested non-PPARα mediated activation. Notably, none of the PTS2 candidates located to peroxisomes. Conclusion In a few cases the PTS may oscillate from "silent" to "functional" depending on its surface accessibility indicating the potential for context-dependent conditional subcellular sorting. Overall, PTS2-targeting predictions are unlikely to improve without generation and integration of new experimental data from location proteomics, protein structures and quantitative Pex7 PTS2 peptide binding assays
InCoB celebrates its tenth anniversary as first joint conference with ISCB-Asia
In 2009 the International Society for Computational Biology (ISCB) started to roll out regional bioinformatics conferences in Africa, Latin America and Asia. The open and competitive bid for the first meeting in Asia (ISCB-Asia) was awarded to Asia-Pacific Bioinformatics Network (APBioNet) which has been running the International Conference on Bioinformatics (InCoB) in the Asia-Pacific region since 2002. InCoB/ISCB-Asia 2011 is held from November 30 to December 2, 2011 in Kuala Lumpur, Malaysia. Of 104 manuscripts submitted to BMC Genomics and BMC Bioinformatics conference supplements, 49 (47.1%) were accepted. The strong showing of Asia among submissions (82.7%) and acceptances (81.6%) signals the success of this tenth InCoB anniversary meeting, and bodes well for the future of ISCB-Asia
Computational vaccinology and the ICoVax 2012 workshop
Abstract
Computational vaccinology or vaccine informatics is an interdisciplinary field that addresses scientific and clinical questions in vaccinology using computational and informatics approaches. Computational vaccinology overlaps with many other fields such as immunoinformatics, reverse vaccinology, postlicensure vaccine research, vaccinomics, literature mining, and systems vaccinology. The second ISV Pre-conference Computational Vaccinology Workshop (ICoVax 2012) was held on October 13, 2013 in Shanghai, China. A number of topics were presented in the workshop, including allergen predictions, prediction of linear T cell epitopes and functional conformational epitopes, prediction of protein-ligand binding regions, vaccine design using reverse vaccinology, and case studies in computational vaccinology. Although a significant progress has been made to date, a number of challenges still exist in the field. This Editorial provides a list of major challenges for the future of computational vaccinology and identifies developing themes that will expand and evolve over the next few years.http://deepblue.lib.umich.edu/bitstream/2027.42/112516/1/12859_2013_Article_5721.pd
Identification of "pathologs" (disease-related genes) from the RIKEN mouse cDNA dataset using human curation plus FACTS, a new biological information extraction system
BACKGROUND: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term "patholog" to mean a homolog of a human disease-related gene encoding a product (transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. RESULTS: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity (70–85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool (FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic (53%), hereditary (24%), immunological (5%), cardio-vascular (4%), or other (14%), disorders. CONCLUSIONS: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets
Computational Vaccinology and the ICoVax 2012 Workshop
Computational vaccinology or vaccine informatics is an interdisciplinary field that addresses scientific and clinical questions in vaccinology using computational and informatics approaches. Computational vaccinology overlaps with many other fields such as immunoinformatics, reverse vaccinology, postlicensure vaccine research, vaccinomics, literature mining, and systems vaccinology. The second ISV Pre-conference Computational Vaccinology Workshop (ICoVax 2012) was held on October 13, 2013 in Shanghai, China. A number of topics were presented in the workshop, including allergen predictions, prediction of linear T cell epitopes and functional conformational epitopes, prediction of protein-ligand binding regions, vaccine design using reverse vaccinology, and case studies in computational vaccinology. Although a significant progress has been made to date, a number of challenges still exist in the field. This Editorial provides a list of major challenges for the future of computational vaccinology and identifies developing themes that will expand and evolve over the next few years
Retroviral Integration Mutagenesis in Mice and Comparative Analysis in Human AML Identify Reduced PTP4A3 Expression as a Prognostic Indicator
Acute myeloid leukemia (AML) results from multiple genetic and epigenetic aberrations, many of which remain unidentified. Frequent loss of large chromosomal regions marks haplo-insufficiency as one of the major mechanisms contributing to leukemogenesis. However, which haplo-insufficient genes (HIGs) are involved in leukemogenesis is largely unknown and powerful experimental strategies aimed at their identification are currently lacking. Here, we present a new approach to discover HIGs, using retroviral integration mutagenesis in mice in which methylated viral integration sites and neighbouring genes were identified. In total we mapped 6 genes which are flanked by methylated viral integration sites (mVIS). Three of these, i.e., Lrmp, Hcls1 and Prkrir, were up regulated and one, i.e., Ptp4a3, was down regulated in the affected tumor. Next, we investigated the role of PTP4A3 in human AML and we show that PTP4A3 expression is a negative prognostic indicator, independent of other prognostic parameters. In conclusion, our novel strategy has identified PTP4A3 to potentially have a role in AML, on one hand as a candidate HIG contributing to leukemogenesis in mice and on the other hand as a prognostic indicator in human AML
Recommended from our members
Distribution of potentially toxic soil elements along a transect across Kazakhstan
The present study aims to investigate the distribution of selected potentially toxic elements (PTEs) in Kazakhstan’s topsoils. Soil samples collected across a north-south gradient (n=40) near main highways connecting major residential/industrial areas were characterized for their As, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn content as well as for soil physio-chemical properties. The majority of the soils had neutral pH (no significant relationship between pH and PTE concentrations). The soil organic carbon was higher at the northern and farther southern parts of the transect (along with higher concentrations of PTEs in soils). As, Mn, and Ni concentrations in soils were elevated in comparison to relevant background concentrations. Critical concentrations of As, Cd, Co, Mn, and Ni (with respect to regulatory limits) were found at multiple locations, with As being particularly of potential concern (range: 8.7-42 mg × kg−1). The distance from the nearest settlement seems to influence the soil PTE concentrations, however the relationship is not statistically significant. In total, eight locations had statistically outlier PTE concentrations for Cd, Mn, Ni, and Zn. The overall results were comparable to similar studies across the world except that the Pb content of the study soils was less elevated. Studies on site characterization and human health risk assessment covering identified hotspots and PTEs are recommended
- …